HONEYWELL

MUILTICS
PL/T LANGUAGE
SPECIFICATION

SOFTWARE

MULTICS

PL/ILANGUAGE
SPECIFICATION

SUBJECT A
A Semi-formal Definition of the Multics PL/I Language

SOFTWARE SUPPORTED
Multics Software Release 8.2

SPECIAL INSTRUCTIONS

This manual supersedes the previous edition, Rev. 1, dated January 1974, which
superseded: Rev. 0, dated July 1972, The Multics PL/I Language Specification
(1969), and A Users Guide to the Multics PL/I Implementation (October 1969).

Includes update pages issued as Addendum A in October 1977,
Addendum B July 1978, Addendum C July 1979, Addendum D, Sep-
tember 1979, and Addendum E in March 1981.

ORDER NUMBER
AG94-02 July 1976

Honeywell

PREFACE

This reference manual contains detailed information for users of the Multiecs
PL/I language. Contained herein are exact answers to detailed questions concerning
the syntax and semantics of PL/I. Additional information useful to the Multiecs
PL/I programmer is found in the following documents:

Multics PL/I Reference Manual - Order No. AMS83

Multics Programmers' Manual (MPM):

MPM Reference Guide - Order No. AG91

MPM Commands and Active Functions - Order No. AG92

MPM Subroutines - Order No. AG93

MPM Peripheral Input/Qutput - Order No. AX49

MPM Subsystem Writers' Guide - Order No. AK92

The Multics PL/I Reference Manual provides an introduction to Multies PL/I,
furnishes guidance for writing a Multics PL/I program, and explains the relationship
between Multics PL/I and the run-time environment supplied by the Multics system.

al terms the functions and features
tion of PL/I data.

The MPM Reference Guide describes in gener
13 r nt

Fod - P -
i toe a

- AN L2 o - merm A - - ™ - o mem me—m Y - = i
o MULLLCS SySiem; LOr eXample, repres

The MPM Commands and Active Functions contains descriptions of the commands
in the command repertoire and the active functions available to the Multics
system.

The MPM Subroutines contains descriptions of the subroutines available on
the system.

The MPM Peripheral Input/Output contains descriptions of commands and
subroutines used to perform peripheral I/0. This manual includes the commands
and subroutines that manipulate tapes and disks as I/0 devices as well as such
special-purpose communications I/0 as binary synchronous operations.

The MPM Subsystem Writers' Guide contains such detailed descriptions as the
the exact layout of a PL/I activation record (stack frame), the internal format
of a PL/I area, and the calling sequence generated for a PL/I call. Most users
will not require the extent of detail contained in this volume.

The MPM Communications Input/Output contains descriptions of commands and
subroutines used to perform communications I/0. This manual includes information
on terminal types.

Significant Changes in AG94 s,_Revision 2 , Addendum E

This list of changes includes only those changes made to AG94 Addendum E
that were accompanied by changes to the Multies PL/I implementation,

1. Clarification (manual onl

¥) of operand conversion for the exponentiation
operator.

3/81 ©oiid AGY4E

l Section 1

Section 2

Section 3

Section 4

3/81

CONTENTS

Introduction . . ,

1.1 Language
1.2 Method of Definxtion .« .
1.2.1 Meta-Language
1.2.2 Syntax Expressions . .
1.2.3 A Formal Definition of
1.3 .

Warning

Structure of a PL/I Program . .
2.1 External Procedure . . .
2.2 Blocks and Block Structur

Multiple Closure of Group

Statements
.1 Statement Prefixes . .

Lexical Syntax of PL/I .

.1 Identifiers ., , . . .

<2 Literal Constants . .

.2.1 Bit-string Constants

+2.2 Character-String Cons

.2.3

«3

4

.
m
<
3
Q
[~

-
7]

Arithmetic Constants
Isubs
Delimiters, Blanks and
Compile-Time Macros . .
Include Macro
.2 Page Macro
.3 Skip Macro

NNNNNNNNNNNNNNNN

ic Behavior of a PL/I
Flow of Control
A Multies PL/I Program .
Dynamic Block Structure
.1 Block Activation . . .
.2 Environment of a Block
Flow of Control Within a
Local and Nonlocal Goto S
Inter-Block Flow of Contr
.7 Begin Blocks
.2 Procedures
+3 OnUnits

Dyn

[PSRVUN N JUNIWI XU VI S VS R WY TUNEVY)
4 & ® o 8 o & 2 @ o s
OOV W W W N = -

Data of PL/T
Data Types . . .

1 Representation of Data

2 Constants .,

3 Variables

4 Data Types of Express1o
5 Arithmetic Data . . .

6 String Data .

7 Loecator Data
8 Area Data .
9 Label Data .
10 Format Data
11 Entry Data

12 File Data . .
Aggregates of Data

.1 Arrays of Scalars
.2 Structures . . .

.3 Arrays of Structures
Storage of Data . . .
Packing and Alignment of

« 2 e s .
“ s s e s e e

.
.
.
.
.
.
.
.

e s 4 s e v e s
e 8 s e s s e e s e s o

Program .

. .
. .
. .
. .

o .

« o 8 8 o e o
“ e o s e o &

eta-Language

« Ee o e e

s Do oo ov o

th

E

S

¢ s s s 0 e ¢ e s & o

.
a
n

tant

-
e O e 0
2]
D
[

n

B
t

e v s o Me o A s e s e o Qe o 0w o
® s s s e s e 4 o e s 8 s e o s o 0 o
@ & 4 & s & e 4 e o ¢ @ © 8 8 8 8 e @
© s & s 4 e s s 4 e s s 5 e 6 s s e o

& e e 4 6 5 & 2 e a e s @

“ e e e s e s s

Comm

« e e
R R S

« s 4 e

.
.
e e e

4 e o o &

" e a3 8 &

Activation

Block Activa
tatements
ol . ..

n

.....ﬂ.-....
.....o......
e e o & 4 s s " e e s e
¢ e st e 4 e s s s e s

* e & s e

« .«
* s e e e
e s .

s e s s s
DT B Y

. .
o o s e »

S a

© e s e+ s e s s s e 5 e e s e e
s e v e e e o

DI

¢ * s s e & 2 e s e s o

L - T
P T T SO

e o s s 4 6 s s s s 8 s a4 De e 8 o0 s

© 6 e s 8 o » & s 8 * 8 s s phe o @

Varxables

© e o 8 e 4 6 & e 8 e s 8+ s s & o & @

Packing and Alignment of
Packing and Alignment of
Packing and Alignment of
Sign types
Storage Classes . .
Allocation of storage
Automatic Storage . .,
Static Storage
Controlled Storage . .
Based Storage
Storage Sharing
.1 Storage Sharing by Parame
.2 Storage Sharing by Based

“« e o 0
FEWN

® ¢ & 4 8 4 8 e 2 4 0 8 B & 8 4 s e s % s s s s 8 8 5 s s e s 8
s e s s e .

R E E R R R R R RO R E R F e R e EEEEEREEEE

iv

.
n
.
.
.
.
1

Scalar Variabl
Structures
Arrays .

a S

8 s e s e 2 6 s (e s e e s e s s s e s s e s s e e s s .

e s e s e e o
* 0 s & o & 6 o s

ters
Variab

N I R P O R
.o .

® s o 3 s s s e & o o

es

le

.
.

“ s e g o e @

¢ e s 4 e ¢ 4 w s s a8 s 3 e s e @

e ¢ & & o o o v e e & 3

" 8 8 e e 8 32 8 & ¢ B & 4 & & s s e+ e s s 6 v s e & = e s =

] R
WOWOO0OIINTUTWUM EE EON = = -

.
—_

: i ‘L.»\iuk‘u l.\)NNNNNNf.\)I\)NNNNNNI\JNNN
FEWWWWMONDND ==

&= = wwwtiowwwww

NN
—_—_
o
-

&T:«EJ:-I:J:J:J:::J‘-‘J:J:-::J::::
- = 2 WDWOWOoRONOVNTW I &

Section §

3/81

Declarations . ., ., .

CONTENTS (cont)

4.3.3.3 Storage Sharing by Defined Variables .
4.3.3.4 TIsub Defining
4.3.3.5 Simple Defining
4.3.3.6 String Overlay Definin S e e e e e

5.1 Scope of a Declaration .
1 Internal Scope
1 External Scope, . .
2 Establishment of Declarations .
2.1 Declare Statements P s e e e
1.1 Defactoring of Declare Statements ., .
1.2 Multiple Attributes . . ., . . © e e .
1.3 Normalization of Levels . . . « v e e
Expansion of the Like Attribute « e s
Establishment of Explicit Declarations .
Declare Statements, ., . . ., . .
1 Declarations of Scalars . . . N
2 Declarations of Arrays

3 Declarations of Structures .

« s e

.

. e

s .
.

.« .
N —

1 e s » o
4 e e e s

B

1

1

1 .

1 P
2 Label Prefixes e s
2.1 Format Constants « s e
2.2 Label Constants-. . . e .
2.3 Entry Constants . . e e e e e e
Establishment of Contextual Declarations
Contextually Derived Attributes . N .
Establishment of Implicit Declarations .
Completion of Attribute Sets . .,
-1 Default Statement . . ,
.2 Evaluation of Default Statements “ e e
3.2.1 Special Cases of the Default Statement
3.3 Language Default Rules
4 Syntax and Semantics of Attributes .

4.1 Aligned

4.2 ares ’

«3 Automatic .

L Y

LI

i Based . .
.5 Binary .
A Rit

.
.
2:2:0 =10 * s .
.

Builtin
Character
Complex
Condition
Constant .
Controlled
Decimal . .
Defined .
Dimension .
Direct . .
Entry . . .
Environment
External .
File . .
Fixed . .
Float . .

¢« o » e o

. .
. .
. .
. .

* e o o
— O 00~y
-0
« e e o s s s e
.
L N N T TP
“ s e e e .
.
.
L T Y

.
—
“ e ¢ 4 e e e o e s @

L
e s e s
.

—_ s
@ ~JAU =W N
D T

.
L S

PN NN NN NN s s
WO~ EWN = OO

s e o e @
« o s s s s &

. .
e 6 s & s e e s e s o
.
. .
.
o e v e .

“ s e v s s e e

Format
Generic
Initial
Input .
Internal
Irreducible
Keyed . .
Label . . .,
Like . . .,

L I I R T

* e e s e

L e I I I I N R
e .

.
.
.
.
.
.
.
-
.
-
.
.
.
.
-
.
.
.
.
.
.
.
.
.
.

« e e 3 4 o s s &

.
.
.
.
-
-

® o o o 0 0 8 e s 0 0
.« s e e
.
v e
e s & ¢ e o
D
D
.
“ ¢ s e o

" e s e s

- O

Local . .
Member .,
Nonvarying
Offset .
Options .
OQutput .
Parameter
Picture .
Pointer .
Position
Precision
Print . .
Real . .
Record ., .
Reducible .
Returns. . .

R A T T T T T T

45 4= E W W W wwite Gy
N = OWO~IoNWM =W N
© e s s s e e 0 e e e
T
L
c b e e e e s e e e

L R N R S S

.-...-..’...o.-.......-.-...-.........
S % s s s s e s e e e s s e s s s e

T

D

N =W

® ¢ * e s s s s s e v e s e s e .
L R T T
L L T S T
D T T T

L I T T T
L T

* s 2 s 4 e s e s e 0

« * e v e s s e

« e & o o @

L

® s e e e e s s &

“ e s s s s

“ e e e e e

" e e e e e

L L

“ e o e o

e s s e o o

Page

415
4-16
4-16
4-19

AU LRV RV RV NV RV RV]
]

ASUAVIRC RV XV RV, XV, XV]

5-24

Section 6

Section 7

Section 8

3/81

References , . . « v e e s e e s e

Expressions . . . e e e e e e s

Conversion of Data Types

CONTENTS (cont)

5.4.48 Sequential 4 4 4 4 e 4 e e s e s s
S.4,48a Signed 4 e 4 e e e e s e e e e
SJHU9 SEAtIC 4 v v v v b e h e e e e e e e e e e
S.H.50 Stream . . . v 4 4 4 e e e e e e e e e e e
S.U.51T Structure b 4 v e e e e e e e e e e s
5.4.52 Unaligned . . « + v « ¢« 4 ¢ 4 4 e v oo e . e e
S.4.52a Unsigned & & ¢ 4 ¢ e o o o 6 o s o .
S.8.53 Update . o o v o 4 e 4 e e e s e e e e e e
S.4.58 Variable . ¢ & o v v ¢ 4 4 4 e e o o 4 e o s
S.U.55 Varying . « . v v 4 4 4 e 4 e e e e e e e e s
5.5 Attribute Consistency . . .« ¢ & v ¢ « &+ o o o

. Simple References e s e s .
Subscripted References . . .
Cross-Section References .
Structure Qualified References .
Reference Resolution and Ambiguit

.
o« v e

Locator Qualified References .
Function References
Built-in Function References .
Generic References
0 Parameters and Arguments . .
0.1 Argument Passing By-value or By-: ferenc
0.2 Argument Conversion and Promotio= . .
0.3 Asterisk and Constant Extents of ?arameter
0.4 Storage of a Parameter
1 Reducibility of Funetions

R S S)
e e o o e s s s o
e e o o & o s e e e
s e e 4 e s v s e w
s e e s e o s e

....~<‘....

.
.
.
.
.
.
.
.
.
.
.

s ¢ A o o s s o 8 o o 8 e s e

[= %o W~ N e e e Yo N e Neo We We Wo Wo Je

a8 % 8 e s o 8 e 0 e e s

- b b b 2 OO N -

T.1 Evaluatlon of Expressions “ e s e .
Evaluation of Primitive Expre331ons
Evaluation of Prefix Expressions . .
Evaluation of Infix Expressions . .
Order of Evaluation
Optional Evaluation . . . e e e
Expression Evaluation and Cond1t1ons

Formal Syntax of Expressions

Operators . . . s e e e e e
Arithmetic Operators PN .

Operand Conversion for Arithmetlc Ope
Results of Arithmetic Operators

i Prefix Operatiomns .

2 Infix Operations . .

3 Exponentiation . . .

it-string Operators

4 s o e e @
UL EW N —

L N It

[+

1

1

1 B
i « e e e e e

1 « e s v w w

1 .

2 .
2.1

2.2 Results of Bit-string Operators .

3 Concatenate Operator . . .

3.1 Operand Conversion for Concatenatlo
3.2 Result of Concatenation

4 Relational Operators

4.1 Operand Conversion for Relational O e
4.2 Types of Comparison
4.3 Results of Relational Operators .

) [
o o CFe s o o 8 CFe ¢ s o & Cte o & o
o

e 8 T s s s s e s s s e e oo e s s e e e s s
e s "Je e s s o Fe e s e s "Pe s e s s e 8 e s e
.

p
Operand Conversion for Bit striﬁg Ope
n
P

o 8 8 e e e 5 3 s 8 e & % e e s 2 e a s s 0 e 8

i e e b T e B T e e T e R T e e e e P P P P By
WWWWWWWLWUWWWWULWWWAAIILI N b s = o

8.1 Contexts That Force Conversion
8.2 Conversion Rules
1 Pointer to Offset Conversion

2 Offset to Pointer Conversion

3 Character-String to Arlthmetlc Conversion
4 Character-String to Bit-String Conversion
5 Bit-String to Arithmetic Conversion . . .
6 Bit-String to Character-String Conversion
7 Arithmetic to Character-Siring Conversion
8 Arithmetic to Bit-String Conversion . . .
1

1

1

1

1

i

1

1

1

1

1

1

1

.

« v s .
s e s e »

.

s s e »
« e e s e
a0 e e ®
s s s w8

Arithmetic Type, Base and Precision Conversio
Format Controlled Conversion
Fixed-Point Format

.1 Fixed-Point Input Conversion
.2 Fixed-Point Output Conversion

Floating-Point Format

.
« s e o

Floating-Point Input Conversion

.
N —

Character-String Format « o =

00 Co Q0 0o Qo 00 00 Lo G QO CR 0O OO Co OO QO 0O GO 0O 0o o
6 o 5 & o s o 8 ¢ o e s 0 85 2 6 & & e o @
DSIOVILVIDSE VISV VA VIV TV VIOV VNI VY VS VY VIV

o
a ® 8 ¢ & e e« o ® o & & prs o+ e s e v o s & w
4 ®= o s » o ® ® & o 0o © Fe o e e o & s v e 3 =

1 .
1 .
1 .
2 B
2 .
2 Floating-Point Cutput Conversion .
3 Complex Format . . « e e e e s .
5 .
5 .
5 .

e« o ¢ o & o s & & e o

Bit-String Format
Bit-string Input Conversion . . .
Bit-string Output Conversion . .

)
N —

.

vi

[I | | L
o 8 0 e
-

]
WWWWWwWw NN DN
-t 2 O OOV WOWOVO

[
PRPOINORNEEWNUNNDN -

RN
s s = VWOVVDERNROAANNWNRN N = = = = =
000 B

.

[}
= O OO0 AT IWW NN N - —

o

1

O 09 G0 G2 G0 00 0o Qv 00 OO OO GO 0 4O OO X0 OO \l\lﬂ\lﬂﬂ—l'ﬂﬂﬂﬂﬂ\lﬂﬂﬂ\l?ﬂﬂ\lﬂﬂﬂﬂﬂ RGO RRRRRRRARNA VI VIUIUVTUIN VUL UL LU

8-10

Qo o
[}
——
n -

8-12
8-14
8-14
8~14.,1

AGY4E

CONTENTS (cont)

Page
8.2.11.6 Picture Format C e e s e e 4 . . Betln
8.2.12 Picture Controlled Conversion, ., . 8-15
8.2.12.1 Syntax of Pictures . . © s e+ e« 4 4 . . 8=15
8.2.12.2 Character Picture Conversion . . ., . ., ., . 8-17
8.2.12.2.1 Character Picture Editing 817
8.2.12.2.2 <Character Picture Encoding 8-17
8.2.12.3 Fixed-Point Picture Conversion . . ., , . 8-17
8.2.12.3.1 Fixed-Point Picture Editing, 8-17
8.2.12.3.2 Fixed-Point Picture Encoding 8-19
8.2.12.4 Floating-Point Picturs Conversion B8-20
8.2.12.4.1 Floating-Point Picture Editing 8-20
8.2.12.4,2 Floating-Point Picture Encoding 8-21

Section 9 Promotion of Aggregate TYPeS v v v v v v e e e e e e . 9-1
9.1 Contexts That Force Promotion . . P I |
9.2 Types of Promotion c e e e e e e e . 9=t
9.3 Promotion Rules ., L

Section 10 Conditions, Signals and On-Units . L o P |
10.1 Conditions and Condition Names 10-1
10.2 Condition Prefixes . . . C ot e e e e v e e e . 101
10.3 Signals and On-units . . . “ s e e e v . 102
10.3.1 Restrictions L T o IS
10.4 PL/I Conditions © t 4 e e v 4 4 e« W 10-4
10.4,1 Area Condition e e s e 4 e 4 4 4 . 10-4
10.4.2 Conversion Condition . . s a s e e v s . . . 10-5
10.4.3 Endfile Condition ., « v e e 4 4 . . 10-5
10.3.4 Endpage Condition L o p
10.4,5 Error Condition e e e e e . . 10=6
10.4.6 Finish Condition e e e e . . . 10=6
10.4.7 Fixedoverflow Condition e v e e . . 10=6
10.4.8 Key Condition . . ., , c e s e e e . . 10=6
10.4.9 HName Condition L [0 IS 4
10.4.10 Overflow Condition L e 4
10.4.11 Record Condition . . . C e e s e e e s e .. 10=7
10.4.12 Size Condition . . . C e e e s e e s s s .. 10=T7
10.4.13 Storage Condition s e 4 e e s 4 4 o« . ., 10-8
10.4.14% Stringrange Condition . . c e s s e 4 s . . 10-8
i0.%.15 Stringsize Condition . . . s e e e e e 4 . . 10=-8
10.4.16 Subscriptrange Condition . . . « e e v . . 10-9
10.4.17 Transmit Condition . . . e s s s 4 e 4 e . . 10-9
10.4.18 Undefinedfile Condition . . e e %t 10-9
10.4,19 Underflow Condition . E O s .
10.4.20 Zerodivide Condition . e e e e s e e o w . . 10-10
10.4.21 Multics and Programmer Defined Conditions . 10-10

Section 11 Input/Qutput, L I P |
11.1 Data Sets , L R |
11.1.1 Stream Data Sets . . . P e e e s s s e s e . 111
11.1.2 Record Data Sets . . . L I P
11.2 File Values and File-state Blocks 11=1
11.3 Opening a File L I
11.4 Closing a File s e e e e .. 11=5
11.5 Conditions and Files s e e e e . . 11a8

Section 12 Syntax And Semantics of Statements s e e e e e . 12-1

2.1 The Allocate Statement T - |
12.2 The Assignment Statement . . . s e e e e e .. 1222
12.3 The Begin Statement s e s s s s 4 .+ & 12-5
12.4 The Call Statement e e e e e . . 12-6
12.5 The Close Statement e e e o 4 4 . 12-6
12.6 The Declare Statement e e e e .. 12<8
12.7 The Default Statement C e e e e . s 12a8
12.8 The Delete Statement s e e e e e 4 e . 12-8
12.9 The Do Statement . . , . . . s e e e 4 e 4 . . 12-9
12.10 The End Statement P e s e e e e e e s e e . 1212
12.11 The Entry Statement . . s e e e s e e s 4 o4 . 12-13
12.12 The Format Statement . . P s s s b e e e e e . 12-14
12.13 The Free Statement e e e s 4 e . s . 12-18
12.14 The Get Statement e - S L]
12.15 The Goto Statement s e e e e e . . 12224
12.16 The If Statement s e e e e e e .. 12224
12.17 The Locate Statement . . . © s s s s e s e s . 12=25
12.18 The Null Statement, . . e e e e e e . . 1226
12.19 The On Statement e e e e e e .. 12226
12.20 The Open Statement . . . , e e e e . . 12228
12.21 The Procedure Statement . e s s e s s e e . . 12229
12.22 The Put Statement s e s s s 12=30
12.23 The Read Statement e e e 0w . 12=34
12.24 The Return Statement , e . . 12=36.1

3/81 vii AGY4E

Page

.
.
.

CONTENTS (cont)

12.25 The Revert Statement .

12.26 The Rewrite Statement

12.27 The Signal Statement .
The Stop Statement

12.27a
12.28 The Write Statement

- — ——— 0O

[B COOOr -~ NANNMOMOMITI NNNWOOOVOVOANROCAROOO0OOQ v v v INNIN
12223333“““a555566666667778889991111111111111111]1111111111222222222222222
UL L (R N I I s ., L) i

1 1 i
MMM MO MM O M MDD 333333333333333333331)333333 MMM MOMEMMEOYTMNOAT MMM MMM MO NN NN
o

= - P A Y Y = Y e Y T T Y Y P~ P T T T — T— — = Y= T — v v e
e s & s e & o 5 s 0o s s e o

L I T T B I

® 6 8 4 o s s e o s e s e 8 s % & & s e o s o s 6 & e s s s s e s 1 s s s s s s s s w o s s e s e v s e s 2 s s e s s e 0 02 o s 0 s e s s s e as
© & o @ 9 8 8 4 06 s 4 4 s s e s s & * .+ s s e s s % 8 s s s 5 8 e & s v s s s s s B s s s s e s o 8 % s e s s a e s e o s s s e s 6 8 s s s e s e
® o 0 & B e ® + 6 e ¢ & ° e e e . ® * @ & 5 e s 0 0 # * & ¢ & P e % B B s e B " W 2 B * & s e = s 2Y) s s 2 s v & e 8 e & & @ & " & e B e e e e @
c
® o & e & o s s s s s s e @ ® + s s & & 4 s s e 8 s s & s & s e 8 s e s s s e s 0 8 © ® v s = s ¥ o e o s s s et s e s e & v . e s o s e e o
ol P
5 e e s s e s e e s s s s o s s s s e 2 s s s B s s s s s s s s s e s s s s s 8 s s s s o s s s 4D e o s s e s e v s w e 0 s e s e 6 o a e s
o o)
® & o s e 8 4 » s e 4 s e e e e+ s s e s 0 8 v s e 3) w s e s s e a2 s e s s v e e s s o e v e & »(g3 6 s 5 o e » e 9 ¢ e 8 e eyd @« ® 8 v e o
=} 3 0 n +»
® & ® ¥ e & e e e s s s e s s e s s o s s 8 s s s s s () e & s s s s s s s a2 s s s s 8 e o e s s e sl e e s s s afs + e 0 e s e Q) e 5 6 e & e =
] o [=] =
U} ° o 8 s & 9 @ s o s s e s s e s s v 2 s s o0 s s o3I e s s 4 e s s s s s s s s s s s s s s 2o afIwd s s e e s eqd & e 6 8 0 © 5 o 0 5 e o s o
c (4] D » (29
S0 * % & s 8 & 8 s o e e e o s s s s s s e s s s s efS e 8 s 8 5 e s s s s s e s s e e s s e s 8 a3 O s e s s s e o s s o e e e 0 e s s =
4 = Lo o |]
$4) o 6 v s e 6 s e e s o e+ s s e o s 0o s o s s s oz, & s e ® s s s 2 s s s s s o ® s e & s s s HpdTI e s s e s 0T s s 8 s s s scd o s o 0 o s &
(<) . ot L [19 1
S v s e o o s e s s s s s s e T s 3 s s s s s o e efIe s e s s 2 s s s s s T e s s e e 0o s s o e L e 6 2 s o e 64> s e 5 e s w0
k=1 -~ m o = —t
afe, *» * ¢ 5 o 4 2 e s e s e s e e e I s e e o ® 5 s] ¢ e % e s s s e 3 2 s e s e . & s s s s s 0w wd + e s e o st s & & © 0 6 Ol e 4 © e 8 » »
el —~ 1 =
efl * 0 @ e & e &0 & s s e B 8 e v E s 2 s e 8 e s apd e s s e s s = e b s s e & = & 2 s s o s YA ¢ s s o s e4) o 0 6 2 o e offl e ® 6 = o = @
Kl Eal O —
O] ° o o e e 8 s 4 s e s s s s e 6L e 0 b s . D O I S I R ® s e e audud o s s s s ed e 8 e s 8 e S e e e s s 0
» +)] m c 20 3 3 [~
s ® ° 5 s sk, SO\ e o s e s = s apd s e s e egd e « e 8 s e e v e e 1 s e s s sENO e s s @MMLE s s s s sM s e s s e O * ¢0 o & o o
et] [} =] @ L] 3] e o 8 o v o B
N5 . N T £ e 8O NEL WL S o oM et . N - I c @ @ e o RN - o DR 2~ IS S T 3
cm [} PR O K P AHAX L OSSP N D ol Q M 9)t et bl .o N ovo oLV~ @ % © - MO LMD
[} [99 T [] + £ o0w LM E L HANE AQ ¢ oL, A WE DD N O POHACLCLOCPLE o ced WO O ™0 34 vOoe QOO
~ WY o AP LAADOTCWHT ST ONO > OLL00LLE U4 A 100 00X CD~ O3 00 0LO 33w LLOHHDVDOO~HLLLOOGOVOO®
PCLAUDONTAOO0OWAN COVOIEXE UK QL IL OENDVEAECO >N HBONAODIL VO AIELECLCELOOOEHEAVDOH MM ANOODTAANNAD
VOt 1 0OML O0OVO VAT I [NNNH>PLPOTVAV00V A ABLILHEEEYX KX N E HOo0O0N0LIVELEESCLCELO0VUHOOOLO
Ct.=<mmam (SRS} voaox Hae<cNOLOLUOOWL, VVOOTIAIALNEOOO0OO0OO0O0OO0O N mMmmM [&]
34 w00 o] . £ .0 [o] b
. en [© VO—NNNNMMIT INO - 00« CO=NMITINOE-0ONO — QN [&] x Ll
TN AN OO~ O™ ™ o —NMNS NV e e e 0NN — O N0 Aalia aa B A TalVo B o = O O NN
[® ® 5 % 0 8 v 8 e t s e o v s 4 e B o s e s e s s * o 4 8 e 8 8 C e u e e e e e e e e s e ¢ e o 0o a0 e 0 o v e e ¢« 8 e 0 o 0 o
I-lal.l.lcl.l.l.l.l-l.I.I.I<I.I.I-l-l.|1..l.l1|.l.l122222222229_22222222222234“4““““5555555565666665
T 0 @ 0 ¢ ¢ & @ o o 2 ¢ o ¢ o & & » o 8 ¢ & & & @ ® ® 8 2 @ 9 e & e T ° U B 8 O S O B S 8 e ® s 6 B 5 B+ e 0 B 8 6 S B 2 UL O B 8 e @ s 0 e ® a s
t3333333333333333333333333333333333332.333333333333333333333333333333333333
v T e T e e T T e e T e e T T e e T r— T Y T T T T T T T T T T Y = T T T T Y T T Y T T T T Y T Y T Tt e e = = T
ot
5 .
@

Section 13

AGY4E

viii

3/81

CONTENTS (cont)

Page
13.6.6 Comvert v v v w v e e e . 13=26
13.6.6a Currentsize v v 13-26
13.6.7 Date & v v .t . e e e e e e e e . . 13=26
130608 EMDPLY « v v v i v e e e e e e e e e e 13-26
13.6.8a Environmentptr e o 13-26.1
13.6.9 Lineno v . . . v v v v e e e e e e e 13-26.1
13.6.10 Null v v . .. e s s e s s o« o 13=286.1
13.6.11 Nullo .« . . v v v v v v v .. s e e s e s . 13=26.1
13.6.12 Offset . v » & o o o « . . s e s e e e o . . 13=26.1
13.6.13 Pageno . . v . . v v v v h w e e e e e e 13=27
13.6.18 Pointer e ou o . . 13227
13.6.14.1 The Standard Definition of Pointer 13227
13.6.14.2 The Nonstandard Definition of Pointer . . 13=-27
13.6.15 Rel & v v v L i vt e e e e e e 13-28
13.6.16 Size oo e e e e 13-28
13,6017 Stac & v v v v v e e e e e e e e e 13-28
13.6.17a Stacq « v v v v 4 v e e e e e e e . 13-28
13.6.17b Stackbaseptr 4 13-28
13.6.17c Stackframeptr « v & v v o v o . . . 13-29
13.6.18 Time o .+ . . . s e e e e e s . . 13229
13.6.19 UNSpee .o v v v v v v h e e e e e e e . . 13230
13.6.20 Valid . . & v v v v v v e « o« « o 13=30
13.6.20a Velock o v v v v v v 0 v . . e e v s s . . 13=30

Appendix A Differences Between Multics PL/I and Standard PL/I . . . A=1

Index i-1

3/81 ix AG94E

SECTION 1

INTRODUCTION

This document is a semi-formal definition of the language supported by the Multics
PL/I compiler. The document is intended to be used as a reference manual by
programmers who need exact answers to detailed questions concerning the syntax
and semantics of Multies PL/I. In keeping with that purpose, the document defines
the language in an analytic rather than a synthetic manner; i.e., it explains
the meaning of programs, but does not describe how to construct programs.

1.1 Language

The Multies PL/I language is a dialect of the American National Standard Programming
Language PL/I, ANSI X3.53-1976; it also conforms to International Standards
Organization standard 6160-1979. Refer to Appendix A for a description of the
two differences between standard PL/I and Multies PL/I. The languages are so
similar that nearly all Multies PL/I programs are valid programs in standard
PL/I.

1.2 Method of Definition

The language is defined using a formal meta-language to define the syntax and
prose to describe the semantics. Although this is a semi-formal definition,
both the syntactic and semantic descriptions are reasonably precise and complete.

Example:

<based attributed::= based[(<locator reference>)]

When the prose refers to a <based attribute> or a <locator reference>, these
terms appear exactly as they do in the syntax rule. When a keyword appears in
prose, it is enclosed in quotes to distinguish it from the text; for example,
"based™ and "float."

Terms defined in prose are underlined when defined and not underlined thereafter.
Examples are provided to aid understanding but are not intended to be comprehensive
or definitive. All examples are clearly set off from the rest of the text as
shown by the example on this page. Within examples where empty space might be
misleading, b denotes a blank.

3/81 1-1 AGYUE

1.2.1 Meta-Language

The syntax of the PL/I language is defined by a set of syntax rules expressed in
a formal notation derived from Backus-Naur Form. Each syntax rule describes a
character-string or pattern of characters that constitutes a syntactic construct
of the PL/I language. The complete set of syntax rules describes all syntactically
correct PL/I programs.

Example:
<skip option>::= skip[(<expression>)]

In this example, <skip option> is a notation variable that represents the
character-string described by the syntax expression on the right of the definition
symbol "::= ", "skip"™ is a notation constant ctat represents an actual occurrence
of the character-string "skip." <expression> is a notation variable defined by
another syntax rule. [and] are brackets that indicate that the parenthesized
{expression> is optional. The brackets are symbols of the meta-language, they
are not part of the <{skip option>.

Readers familiar with formal grammars should note that these syntax rules are
designed to aid presentation of both syntax and semantics. Therefore, constructs
like multiple closure of <group>s and <bloek>s and the balaneing of "then" and
"else" keywords of <if statementds are not described by the syntax rules, but
are described in prose. :

Readers not familiar with formal descriptions of syntax should not be concerned
if they do not fully understand the formalism. They are urged to compare examples
against the syntax rules and from time-to-time consult the description of the
formalism given in the following section.

1.2.2 Syntax Expressions

A syntax expression consists of operators, notation variables, notation constants,
braces { } and brackets []. The operators have a property known as precedence
that determines the order in which the syntax expression is interpreted. Operators
with higher precedence are interpreted before operators with lower precedence.
Braces and brackets have the effect of parentheses and force the interpretation
of their contents as subexpressions.

The operators of the meta-language in order of decreasing precedence are:

Repetition Xeow Denotes one or more
occurrences of X.

Juxtaposition X Y Denotes an occurrence of X
followed by an occurrence of Y.

Alternation XY Denotes an occurrence of
X or Y but not both.

3/81) 1-2 AGO4E

Brackets and braces define the order of expression interpretation. Brackets
also indicate that the syntax described by their enclosed subexpression is
optional.

[x] Denotes zero or one occurrence of X.

{A1B}C Denotes an A or a B, followed by a C.
Example:

A}BiC

describes any of the following three strings:

ABC
Example:
{AiB}C

describes either of the following two strings:
AC BC

Example:
(AiBIC

describes any of the following three strings:
ACBC C

Example:
AB[C]...

describes any string beginning with AB followed by zero or more occurrences of
the letter C.

AB ABC ABCCCC
Example:
A B...

describes any string beginning with A and followed by one or more occurrences of
the letter B.

AB ABB ABBBBB
Example:
AB...
describes any string consisting of one or more occurrences of AB.

AB ABAB ABABABAB

1.2.3 A Formal Definition of the Meta-Language

Syntax:
<meta-language>::= <syntax rule)...
<{syntax rule>::= <notation variable>;:=<blank>

<{syntax expression>

1-3 AG94

{syntax expression>::=z <sequence>|
{sequence> <{syntax expression>

{sequence>::= <unit>i<unit><sequence>

{unit>::= <notation variable>{<notation constant>!<unit>...|
{<syntax expression>}|[<syntax expression>]

<notation variable>::= <<meta=-letter>
[<meta-letter>|<blank>{-]...>

<meta-letter>::= ajbicidieifiginhii{jikiliminlolpiqirisitiu|
viwixiylz

<blank>::= a blank space

{notation constant>::= Any string of ASCII characters not
containing a <blank>. If the string is one of the
following, it must be underlined to distinguish it
from symbols of the meta-language.

A T O R S R G S

A <blank> is required between any adjacent <notation constant>s in a {sequence>.

1.3 Wapning

PL/I, 1like most other programming languages, is a language in which it is
possible to write programs whose meaning is undefined. Furthermore, it is not

practical to always detect such programs either during compilation or during
execution.

Because of the large number of constructs in PL/I, it 1is very easy to
inadvertently write a program whose meaning is undefined. Programmers are
advised to learn the exact rules for using sach comstruct, and are advised to
carefully consider the warning given in this section.

Only those strings described by <external procedure> are syntactically valid.
All others violate the syntactic constraints specified by the syntax rules and
are in error.

When the description of a language construct specifies a constraint either by
means of syntax rules, by specifically enumerating the constraints as is done in
Section 12, or by giving the constraint in the description of the semantics, the
constraint has the following meaning:

A program that violates the constraint may or may not be compiled by the
Multies PL/I compiler. If compiled, it may or may not execute. If
executed, it may or may not produce consistent results in the current or
future versions of the implementation.
Constraints are given by the syntax rules or are stated clearly in the prose.
In the prose, two descriptive methods are used: either the constraint is
specifically described as an error or the words '"must", "cannot", or
"restricted" are used to imply the constraint.
Examples:
It is an error to refer to the value ...
The program is in error if ...

N must not be ...

1=4 AG9Y

A <read statement> cannot contain ...

The value of q is restricted ...
This document explicitly states the circumstances in which the order of
evaluation of expressions or statement parts is a well defined property of the

language and when it is not. When the order is said to be unspecified or
undefined, any program that depends on the order is in error.

1=5 AG94

SECTION 2

STRUCTURE OF A PL/I PROGRAM

2.1 External Procedure

A PL/I program consists of one or more <external procedure>s together with their
operating environment. An <external procedure> is a {procedure> that is not
contained within another <procedure>. An <{external procedure> is the largest
syntactic construct of the language and serves as the unit of input to the
Multies PL/I compiler.

The set of <external procedure>s that constitute a program is determined during
execution of the program as described in Section 3.

Syntax:

{external procedure)::= <procedure>

2.2 Blogks and Block Structure

The most important syntactie construct of the language is the <b16ck>. It
delimits the scope of names and is the major unit that determines the flow of
control during program execution. Refer to Section 3 for a discussion of the
flow of control and to Section 5 for the scope of names.
Syntax:

<block>::= <procedure>|<begin block>

<{procedure>::= <procedure statement)
[<procedure component>]...<end statement>

<begin block>::= <begin statement>
[<block component>]...<end statement>

<{procedure component>::= <block component>|{<entry statement>
<block component>::= <block>}<group>!<declare statement>!
<{default statement>|<format statement>!
{independent statement)
The full syntax and semantics of each {statement> are given in Section 12.
All of the text of a <begin block>, except the <label prefix>s of the <begin
Statement> and the <closure label)> of its <end statement>, is gontajined in the
<begin block>.

Example:

A: begin

2-1 4 AG9Y

The text shown with lines is contained in <begin block> A.
all of the text of a <procedure>, except the <label prefix>s of its {procedure
statement> and each of 1its <entry statement>s and the <closure label> of its
<end statement>, is contained in the <procedure>.
Example:

A: procedure

B: entry

__end &;
The text shown with lines is contained in <procedure> A.

The text contained in <block> A, but not contained in any other <block>
contained in A, is immediately gontained in <block> A.

Example:

P: procedure;

Inner: procedure;

E: entry;
B: begin;
end;
end;
end;

In this example, P 1is an <external procedure> that contains the <procedure>
Inner. 1Inner has a secondary entry E, and Inner contains a <besgin block> B. B
is contained in Inner and P, and is 1mmed1ately contained in Inner.

2.3 Groups
A <group> is a programming device used to determine the flow of control during
program execution.
Syntax:
<group>::= <iterative group>|<noniterative group>

{iterative group>::= <iterative do>
[{<block component>]...<end statement>

<{noniterative group>::= <noniterative do>
[<procedure component>]...<end sta‘ement>

The effect of <group>s on the flow of control is discussed in Sections 3 and 12.

Examples:
A: do;
end;

2-2 AGY94

B: do i = 1 to 10;

end;

In this example, the text from A to "end;" is a <noniterative group> and the
text from B to "end;" is an <iterative group>.

2.4 Multiple Closure of Groups and Blocks

The syntax of a <group> or <block> requires that the <group> or <block>
terminate with an <end statement>. Since <{group>s and <block>s Zay ©be nested,
it is possible for several <end statement>s to immediately follow each other.

Example:

a: begin;
b: begin;
c: begin;

end;
end;
d: end;

The syntax of an <end statement> allows an optional <identifier> to follow the
keyword "end."

Syntax:
<end statement>::= [<prefix>]end(<closure label>];
{elosure label>::= <identifier>

The <closure label> provides a means of terminating more than one {group> or
<block> with a single <end statement>. The following example is equivalent to
the previous example.

Example:

a: begin;
b: begin;
¢: begin;
d: end aj;

An <end statement> with a <closure label> terminates all preceding <group>s and
<block>s including, but not -exceeding, the nearest <group> or <block> whose
first <statement> has a <label prefix> that is the same <identifier> as the
<closure label>.

The program is syntactically incorrect if the <closure label)> is not a <label

prefix> on a preceding <begin statement)>,- <procedure statement>, or <do
statement>.

2-3 AGY4

2.5 Statements

Syntax:

{statement>::= <{declarative statement>!
{dependent statement>;<{independent statement)

{dependent statement>::= <format statement)|
{entry statement>|<procedure statement>!
<begin statement>|<do statement>|<end statement>

{independent statement>::= <allocate statement>!
{assignment statement>|<call statement)>!
{close statement>|<delete statement>!

{free statement>|<get statement>|

<goto statement>|<if statement>!

<locate statement>!<null statement>!

<on statement>|{<open statement>|

{put statement>|<read statement>!

{return statement)>|<revert statement)|

{rewrite statement>|<signal statement>!<stop statementD>!
{write statement>

{declarative statement>::=<declare statement)>|<default statement>
The syntax and semantics of each <statement> are given in Section 12. The
effeet of <declarative statementd>s on the . establishment of declarations 1is
described in Section 5. .

All <statement>s are executable, although the execution of a <declarative
statement> or <format statement> has no effect.

The <dependent statement>s control input/output, define entries to {procedure>s,

and form <procedure>s, <begin block>s, and {group>s in accordance with the
syntax rules in paragraphs 2.2 through 2.4.

2.5.1 Statement Prefixes

Syntax:
<prefix>::= [<condition prefix>]...(<label prefix>]...
{condition prefix>::= (<prefix name>[,<prefix name>l...):
<label prefix>::=z <declared name>[<prefix subscript>]:
{prefix subseript>::= ([+}-]<decimal integer>)
{declared named>::=z= <identifier>

A <label prefix> names a <statement>. Any <statement> may be labeled by a
<label prefix>.

A <condition prefix> is a means of controlling the type of error checking that
is to occur during execution of the <statement>. The {prefix name> must be one
of the names given in paragraph 10.2, where conditions are fully described. A
<condition prefix> cannot appear on a <declare statement>, <default statement>,
or <entry statement>.

T/78 2-4 AG94B

Example:

L: a = b+c;

A(3): x = ye+z;

(zerodivide): p = q/r;
(overflow,size): T1: t = s+1;

In this example, L:, A(3): and T1: are <label prefix>s, whereas (zerodivide):
and (overflow,size): are <condition prefix>s.

2.6 Lexical Syntax of PL/I

The

smallest syntactic construect of the language is called a <lexemeD.

Sequences of <lexeme>s form {statement>s, that in turn form the <group>s and
<{block>s of an <external procedure). :

Syntax:

2.6.1

{lexemed>::= <identifier>|<literal constant> (<isub><delimiter>

Identifiers

An <identifier> is used as a keyword or as a <declared name>. A keyword is an
<identifier> used within the language to identify <statement>s or components of
<statement>s. In Multics PL/I, keywords consist entirely of lower case letters.

Syntax:

@ -

<digit>::= 0}1i{2i3i4!5}

In Multics PL/I, an <identifier> cannot be more than 256 characters long. Refer

to the Multics PL/I Reference Manual for a discussion of the significance of a
"$" in an <1denTiflef> used "4s”an “éXternal name.

Examples:

Capital
i

X
declare
tag7
ioa_
may$day

2.6.2 Literal Constants

A <literal constant> is a <{lexeme> denoting an arithmetic or string value.

Syntax:

<literal constant)>::= <bit-string constant>|
{character-string constant)>!<arithmetic constant)

2=5 : AG94

The character-string used to represent a <literal constant> in Multies PL/I
cannot be more than 256 characters long, including quotation marks and final "b"

character, if any.

2.6.2.1 Bit-string constants

A <bit-string constant> denotes the bit-string value formed by <converting the
characters contained within gquotes to bits according to the following table and
then concatenating that value to itself N-1 times, where N is the value of the
<decimal integer>. N must be greater than 0.

<character> Bit Value for <character>
by <radix factor>

b,bt b2 b3 bd
0 0 00 000 0000
1 1 01 001 0001
2 - 10 010 0010
3 - 11 011 0011
4 - - 100 0100
5 - - 101 0101
6 - - 110 0110
7 - - 111 0111
8 - -—— - 1000
9 - - - 1001
a - - - 1010
b —-— - - 1011
c - - -—— 1100
d - - - 1101
e -— - - 1110
f - - - 1111
Other - - . —-—

Note: == indicates that the corresponding <character> is invalid for this
<radix factor>.

Syntax:

<{bit-string constant>::=
[{(<decimal integer>)]"(<character>]..."<radix factor>

<radix factor>::= {bib1ib2ib3|b4}

In Multies PL/I, the value of an expanded <bit-string constant)> cannot be more
than 253 bits long.

A null bit-string value is denoted by ""b.

Examples:

"01011"b
ll1nb

nnb
"0247"b3
"De5 b4
(3)"1"p

The last example is equivalent to "111"b.

11/77 2-6 AG94A

This page intentionally left blank.

3/81 AG9YE

<binary constant>::z <binary number>[<scale type><exponent>lb[p]

<binary number>::z <binary integer>[.[<binary integer>]]}
.<binary integer>

<binary integer>::=z <binary digit>...
<binary digit>::= 0}1

The <exponent)> of a <binary constant> is written as a <decimal integer> and
denotes a power of two. The <exponent> of a <decimal constant> denotes a power
of ten.

The arithmetic value denoted by an <arithmetic constant> must lie within the
range allowed by the maximum precision supported for the data type and base of
the constant. See paragraph 4.1.5 for a precise description of the range of
values supported for each data type and base.

For definitions of "p=», "eM, Mmi" " and "f" in an <arithmetic constant>, see I
Section 5.2.56.

Examples:
47 .3
101b 1p
25.7 1bp
10.30 1bpi
07.20 8.64f10
10.24e3 1£18b
12.1e+5
101.101e+5b
251

3/81 2-7.1 ' AGYUE

2.6.2.2 Character-String Constants

A {character-string constant)> denotes the character-string value formed by replacing
all double quotes by a single quote, removing the containing quotes, and concatenating
the value to itself N-1 times, where N is the value of the <{decimal integer>. N
must be greater than zero. :

Syntax:

<character-string constant>::= [(<decimal integér>)]
n{<character>]..."

<{character>::= ""| Any ASCII character except a quote

In Multies PL/I, the value of an expanded {character-string constant> cannot be
more than 254 characters long.

A null character-string value is denoted by "",
Examples:
Tabe"

"This is a character-string constant"
(25)n n

nmnn
"he said, ""I don't know"""

2.6.2.3 Arithmetic Constants

An <arithmetic constant> denotes an arithmetic value of a given type, base,
mode, and precision. The type, base, mode, and precision are known as <attribute>s
of the constant and are normally determined by the syntax of the constant.
Refer to Section 5 for a discussion of the declaration of constants.
Syntax:

{arithmetic constant>::= <real constant>|<imaginary constant>

<{imaginary constant>::z <real constant>i

{real constant>::= <decimal constant> (<binary constant>

{deecimal constant)::z ecimal number>({<scale type><exponent>]

<decimal number>::= <decimal integer>([,[<decimal integer>]]!
.{decimal integer>

{decimal integer>::= <digit>...

<digit>::z 0]112131415!6171819

<{scale typed>::= e|f

{exponent>::= [+|-]<decimal integer>

11/77 2-7 AG94A

2.6.3 Isubs
An <isub> is a <lexeme)> used only in a <subscript> of a <base reference> of a
{defined attribute>. Its semantics are described in paragraph 4.3.3.4.
Syntax:
<{isub>::= <decimal integer>sub
Example:

Ssub

2.6.4 Delimiters, Blanks and Comments

The <identifierd>s, <arithmetic constant>s, and <isub>s of an <external procedure>
are separated from one another by one or more <delimiterds.

Syntax:
<delimiter>::= <graphic delimiter>|<spaced>|<comment>

<{macro>|<bit-string constant>!
<{character-string constant>|"<picture>"

{graphic delimiter>::= AR A IR O -
=:“='5:‘g:z:‘z:g=:zz
I {space>::= <blank>:<newline>:<tab>:<newpage>

<{blank>::= ASCII blank character

{newline>::= ASCII newline character
{tab>::=z ASCII horizontal tab or ASCII vertical tab
l. <{newpage>::= ASCII newpage character

{comment>::= /* ASCII characters except an asterisk
followed by a slash LV

There is no restriction on the length of a <comment> or on the number of <spaceds
used as a <delimiter>,

The higher level syntax rules do not indicate where <spaced>s, <comment>s, and
<include macrods can be used. They can be freely used between any two <{lexeme)s.
Where the high-laevel syntax rules show Lwo adjacent <identifier>s, <arithmetic
constant>s, or <isub>s, at least one <space> or <comment> is required to separate
them.

Examples:

a+b+7

do i =1 to 10;

do 1 = 1 to/® upper limit #/10;
declare a bit(19),b pointer;

/% This is a comment */

_3/81 ’ 2-8 AG94E

2.7 Compile-Time Macros

<macro>::= <include macro))<page macro>|<skip macro>

2.7.1 Include Macro

Syntax:

<include macro>::= %include<space>...
{<identifier>i<character-string constant>};

The compiler replaces each <include macro> with the contents of the segment
whose name is formed by appending ".inel.pli"® to the <identifier> or
{character-string constant>. The segment is searched for by using the "translator™
search list, which has a synonym of "trans". (See the add_search_paths command
in the MPM Commands and Active Functions manual.)

The replacement of <include macrods is performed during the application of the
lexical-level syntax rules and, consequently, has no effect on the high-level
syntax rules. The replacement is performed from left-to-right.

After the replacement is performed, the scan resumes at the beginning of the
included text; therefore, the included text may contain <include macro>s. The
text that results from the expansion of all <include macro>s must be a valid
{external procedure> as described by the syntax rules. Refer to the Multics
PL/I Reference Manual, Order No. AM83 for a discussion of segments and segment
names.

Example:
declare p pointer;
%include T;
declare f fixed;
becomes
declare p pointer;

declare 1 record, 2 fieldl, 2 field2;
declare f fixed; .

Where "declare 1 record, 2 field1l, 2 field2;" is the contents of s segment whose

name is "T.inecl.pli".

2.7. Page Macro

Syntax:
<{page macro>::= %Ipage((<decimal integer>)];

The effect of the <page macro> is to continue the listing of the source program
on a new page.

The compiler deletes each <page macro> from the text of the program, so it has
no effect on the meaning of the program.

Let N be the value of <decimal integer>. If <(decimal integer> is not specified,
let N be 1. The <page macro> inserts N newpage characters into the listing.

3/81 2-9 AG9UE

2.7.3 Skip Macro

Syntax:
<skip macro>::z %skip((<decimal integer>)];

The effect of the <skip macro> is to continue the listing of the source program
after inserting one or more blank lines.

The compiler deletes each <{skip macro> from the teit of the program, so it has
no effect on the meaning of the program.

Let N be the value of <decimal integer>. If <decimal integer> is not specified,
let N be 1. The <skip macro> inserts N newline characters into the listing.

3/81 2-9.1 AGY4E

SECTION 3

DYNAMIC BEHAVIOR OF A PL/I PROGRAM

3.1 Flow of Control

A PL/I program is executed by a processor, or control, that follows a path
through the program known as the flow of control.

The program determines the flow of control by the use of <goto statement>s, <if
Statement>s, <call statement>s, <function reference>s, <begin block>s, and
<group>s. A program cannot control the real time rate at which it is executed
and it cannot create multiple paths for control to follow simultaneously.

3.2 A Multics PL/I Program

A PL/I program 1is a set of <Kexternal procedure>s and their operating
environment. The set of <external procedure>s that constitute a program in
Multies PL/I is dynamically determined by the execution of the program. When an
<external procedure>, A, is first referenced within a process or run unit, it
becomes part of the program. Subsequent calls to A, or to any entry of 4,
invoke the <external procedure> incorporated in the program by the first
reference to A. Refer to the Multics PL/I Reference Manual for a brief
discussion of Multiecs dynamic linking and name resolution.

Throughout this document, a Multics process, exclusive of contained run units,
is considered to be a single PL/I program and a control. The control begins
executing the program when the process is created. A process is either in a
state of execution or is waiting to be executed. A waiting process is blocked.
The process may be blocked at the discretion of the operating system or as a
result of explicit calls to Multies procedures. The blocking of a process has
no effect on the subsequent execution of the process except to delay its
execution in real time.

A Multies run unit, which is a separate environment similar to, but contained
. mam—— — - .

in, a process, 1S also considered to be a single PL/I program and a control. A
process may cause a run unit to be activated; its execution resumes upon
termination of the run unit.

When a process or run unit terminates, all files opened during its execution,
and remaining open, are closed, unless termination is due to partial destruction
of the process or run unit, or unless termination is due to exhaustion of
process resources.

T7/78 3-1 AG94B

3.3 Dynamic Block Structure

3.3.1 Block Activation

A <block> is activated when control enters the <block>. It remains active until
control returns from the <block>. At least one <block> 1is always active, the
first one that control entered. Since <block>s may ' be nested and <procedurels
may call each other, several <block>s may be active. The order in which the
<{block>s were activated determines the dynamic relationship between the
<block>s.

If control passes from an active <block> A to <bloeck> B, A 1s said to be the
dynamic predecessor of B, and B is the dynamic descendent of A.

A block activation is a given activation of a given <block>. An activation
record is a unit of storage allocated for a block activation. This unit orf
storage contains information needed by control in order to execute the
{statement>s in the <block> and is the place where all automatic variables
declared in the <block> are allocated. Refer to paragraph 4.3.2.2 for a
discussion of storage allocation for automatic variables. Label, format, and
entry values contain as part of their value a pointer to an activation record.
Refer to paragraph 4.1 for a discussion of data types.

3.3.2 Environment of a Block Activation

Every block activation has a parent pointer. A parent pointer is a pointer to
an activation record of a <block)>'s immediately containing <bloek>. Since
(external procedure>s have no containing <block>, their parent pointer is null.

When control references automatic variables, defined variables, parameters,
label constants, format constants, or entry constants declared in a containing
<block>, control must know which of several possible activation records of the
containing <block> it is to reference. The parent pointer of a block activation
points to the correct activation record of its immediately containing <block>.
Wnen a reference is made from within a <block> through several containing
<block>s, the parent pointer of each <block> points to the correct activation
record of its immediately containing <block).

Example:
P: procedure;
" declare A fixed automatic;
declare I entry external static;
if first_invocation then I = Inner; else call E;
call F;
Inner: procedure;

A = A*2;

7/78 3=-2 AG94B

Assume that P calls F, and F calls P, then P calls E, and E calls I. The order
of block activations is P,F,P,E,I. When I references A, it must select the
correct activation record of P so that it can reference the correct instance of
A. In this case, the correct activation record of P is the first activation
record’of P, because it was that activation that created the entry value I by
assigning the internal entry constant Inner to I.

The parent pointer of an activation of a <begin block>, other than <begin
block>s used as <on unit>s, is a pointer to the most recent activation record of
the <block> that immediately contains the <begin block>. Because a <begin
block> cannot be invoked except by the <block> which immediately contains it,
the activation record pointed to by the parent pointer is also the immediate
dynamic predecessor of the <begin block> activation.

The parent pointer of a <procedure> block activation is the activation record
pointer part of the entry value used to invoke the procedure. .(Refer to
paragraph 4.1.11 for a discussion of entry data.

The parent pointer of an activation of an <on unit> is a pointer to the

activation record of the bloeck activation that established the <on unit>. See
paragraph 3.6.3 for a discussion of <on unit>s and the flow of control.

T7/78 3=2.1 AG94B

This page intentionally left blank.

7/78 : AGQ4B

- - B D S ——" . > i o ——— c—

The flow of control within a block activation proceeds from <statement> to
{statement> in the order ' in which the {statement>s appear in the text of the
<{block>, except as influenced by actions of a {statement>.

The order in which the components of a <statement) are evaluated is defined in
Section 12 where the syntax and semantics of each type of <statement> are
defined. The order of evaluation of {expression>s is given in Section 7.

The flow of control within a <group> is specified by the <do statement> which
begins the <group> and by <statement>s within the <group>.

A <goto statement> transfers control to any labeled {statement> within the
<block> by referencing a name declared by a <label prefix> appearing on any
{statement>, other than a <format statement>, <entry statement>, or {procedure
statement>, within the <block>.

A <{goto statement> also transfers control to a <{statement> within the current
block activation if it references a label variable or label-valued function that
identifies a <statement> within the <block>, but only if the activation record
pointer part of the label value points to the current block activation record.
Refer to paragraph 4.1 for a discussion of data types.

3.5 Local and Nonlocal Goto Statements

A <goto statement> that transfers control to another <statement> within the same
block activation is known as a local goto. A <goto statement> that transfers
control to a <statement> in~ a ~dynamically preceding block activation is a
nonlocal goto. It is an error for a <{goto statement> to attempt to transfer

control to a <{statement)> within an inactive <block>.

3.6 Inter-Block_Elow of Control

3.6.1 Begin Blocks

Control enters a <begin block> by passing through the <begin statement> which
heads the <block>. Control returns from a <begin block> by passing through the
<end statement> that terminates the <block>, or by the execution of a <return
statement> or a nonlocal goto. A {begin block> cannot be invoked by <function
reference>s or <call statement>s. A <label prefix> on a <begin statement)>
defines a label constant, not an entry constant,

Wnen control returns from a <begin block> by execution of the <end statement>,
it returns to the dynamically preceding <block>; which is always the <block>
immediately containing the <begin block>. Execution continues with the
{statement> following the <end statement> .,

If a <return statement)> within a <{begin block> is executed, it returns control
to the dynamic predecessor of the most recent {procedure> block activation.

3-3 AG94

Example:

X: procedure;

begin;
begin;
return;
end;
end;
end;

Execution of the <return statement> in this example returns control to the block
activation that invoked X.

3.6.2 Procedures

Control enters a <procedure> when one of its entries is invoked by a <function
reference> or <call statement>. Control returns from the <procedure> by the
execution of a <return statement>, the execution of the <end statement> which
terminates the <block>, or by the execution of a nonlocal goto.

gxecution of the <statement> which invoked the <procedure> is incomplete if the
{procedure> returns via a nonlocal goto. Such incomplete executions are in
error only if the invocation resulted from the evaluation of an <initial
attribute> or <extent expression> of an automatic or defined variable, and only
if control returned to the <block> in which the variable was declared. Refer to
paragraph 4,3.2.

A <procedure> invoked as a subroutine by a <call statement> cannot return
control by the execution of a <return statement> that contains a <return value>.

A <procedure> invoked as a function by a <function reference> must return
control by the execution of a <return statement> containing a <return value>, or
it must return by the execution of a nonlocal goto.

If control réaches a {procedure statement>, except as a result of an invocation
of the <procedure>, it passes around the <procedure> and continues with the
execution of the <{statement> following the <procedure).

3.6.3 On Units

Syntax:

<{on statement>::= [<prefix>lon<condition list>[snapl<on unit>
<on unit>::= <begin block>|{<independent statement)|system;
{condition list>::= <condition name>[,<{condition name>]...

The execution of an <on statement> causes the <on unit> to be established, but
does not cause execution of the <on unit>. An established <on unit> is
associated with the block activation that contains the <on statement>.

Control enters an established <on unit> when one of the conditions identified by
the condition list is signalled. A condition is signalled by the execution of a
<signal statement> or by detection of the condition during program execution.

Control returns from an <on unit> by the execution of a nonlocal goto or when
control reaches the end of the <on unit)>. An <on unit> consisting of an
{independent statement> behaves as if it were a <{block>, and the execution of an
<on unit> 1is effectively a Dblock activation. The parent pointer of an
activation of an <on unit> is a pointer to the activation record of the block
activation that established the <on unit>. A complete discussion of conditions
is given in Section 10.

M"/77 3-4 AG94A

SECTION 4

DATA OF PL/I

4.1 Data Types

4.1.1 Representation of Data

Each value is a member of only one set of values called its data type. The data

type of a value determines how that value is stored within the computer, and
determines which operations can be performed on the value.

The internal representation of data is not defined by the language and no
feature of the language, except the '"unspec" and nonstandard Multics built-in
functions, depend on it. Refer to the Multiecs PL/I Reference Manual,
Order No. AM83, and to the MPM Reference Guide, Order No. AGY91, for a
description of the internal representation of PL/I data.

Only arithmetic and string values have an external character-string
representation defined by PL/I. The external representation of arithmetic and
string data is a string of characters formed according to the syntax rules given
in paragraph 2.6.2 for <literal constant>s, or produced by arithmetic to

character-string conversion as described in Secticn 8.

A constant is a value that cannot change during program execution. A constant
is either a <literal constant> or a named constant. A <literal constant> is a
constant whose lexigraphical representation in the text of an <external
procedure> denotes its value. <bit-string constant>s, <character-string
constant>s, and <arithmetic constant>s are <literal constant>s and are defined
in paragraph 2.6.2. A named constant is a constant whose value is represented
in the text of an <external procedure> by a <reference> to a <declared name>
declared with the <constant attribute>. Label, format, entry, and file
constants are named constants. Refer to Section 5 for a discussion of
declarations.,

4,1.3 Variables

A variable is a named object capable of representing different values all having
.the same data type. Because variables are restricted to representing values of
a given data type, they are characterized by their data type and are referred to
as: bit-string variables, fixed-point variables, etec.

Since values are stored in variables, a variable must own sufficient storage to

contain any value that it may represent. A variable's storage is its generation
of storage. Section 4.3.2 describes how storage is allocated for variables.

T/79 4-1 AG94C

4.1.4 -Data Types of Expressions and Functions

Although <literal constant>s and <reference>s are simple forms of <expression>s,
throughout this section we will wuse expression to denote either an 1infix
expression or a prefix expression as described in Section 7.

Expressions and functions are restricted to computing values of a given data
type.

The data type of the values of an expression 1is determined by the rules of
expression evaluation given in Section T and by the rules of data type
conversion given in Section 8. The data type of the values returned by a
function 1is determined by the <returns attribute> specified in the declaration
of the function. In the following sections, functions are described as having a
data type. This is a convenient way of referring to the data type of the values
returned by the function. Refer to Section 5 for a discussion of declarations.

4.1.5 Arithmetic Data

An arithmetic value 1is either a fixed-point value or a floating-point value.
The data type of an arithmetic value is.completely specified by four properties:
The mode, which may be complex or real, the base, which may be binary or
decimal, the Ltype, which may be fixed-point or floating-point, and the
precision.

The precision of a fixed-point value is (p,q), where p is the total number of
binary or decimal digits in the number, and q is a scale factor giving the
location of the implied decimal or binary point. A positive scale factor means
that the point 1is 1located q places to the left of the rightmost digit. A
negative scale factor means that the point is located q places to the right of
the rightmost digit. Thus, a fixed-point value can be considered to be the
implied product of an integer of p digits times b**-q, where b is the base of
the value, (10 or 2).

The precision of a floating-point value is (p), where p is the minimum number of
binary or decimal digits that are to be maintained 1in the mantissa. A
floating-point value consists of a mantissa and an exponent. In Multies PL/I, a
binary floating-point value has a mantissa that is a binary fraction, f, whose
absolute value is (1/2)Xf<1 or is zero, and whose exponent, e, is an integer
whose value is -128<e127. The binary floating-point value 1is [¥2%%e, A
decimal floating-point wvalue has a mantissa that is an integer, m, whose value
is in the range +{((10**p)-1), and an exponent, e, that is an integer whose value
is -128<e£127. The decimal floating-point value is m¥*¥10%*e.

In Multies PL/I, the precision of floating-point binary data is restricted to no
more than 63 binary digits. The precision of fixed-point binary data 1is
restricted to no more than 71 binary digits, and the precision of decimal data,
either fixed-point or floating-point, is restricted to no more than 59 decimal
digits. The scale factor is restricted to -128<£q<127.

When necessary to avoid 1loss of significant digits, a decimal floating-point
value is normalized such that the most significant digit of the mantissa is
nonzero. A binary floating-point value 1is always normalized as a binary
fraction whose most significant digit is nonzero, unless the entire value is
zero. The overflow condition occurs when a computation or conversion develops a
floating-point value whose exponent exceeds 127, and the underflow condition
ocecurs when a computation or conversion develops a floating-point value whose
exponent is less than -128. Refer to Section 10 for a discussion of conditioms.

The rules of PL/I arithmetic are such that computations on fixed-point values
produce true arithmetic results, except for fixed-point division which truncates
low order digits. Computations on floating-point values produce floating-point
results - that pressrve at ' least the most significant p digits of the true
arithmetic result. Refer to Section 7 for a discussion of PL/I arithmetic.

) AG9Y

Arithmetic variables and arithmetic-valued functions are declared with the <fixed
attribute> or the <float attribute>, a <binary attributed or a <{decimal attribute>,
a <real attribute> or a <complex attribute>, and a {precision attribute> as
described in Section 5. i

4.1.6 String Data

A string value is either a bit-string value or é character-string valiue. &
bit-string value is a sequence of bits, and a character-string value is a sequence
of ASCII characters.

The number of characters or bits in the value is the current length of the
string value. A bit-string value with no bits is a null Sltastrzna, and =z
character-string value with no characters is. a null character-string.

A string expression or string-valued function can yield string values whose
lengths differ each time the expression or function is evaluated. The value is
either always a bit-string or always a character-string.

String variables, however, have a maximum length that is determined when storage
is allocated for the variable. A nonpictured string variable is declared with
either the <varying attribute) or the {nonvarying attribute>. These Cattributeds
determine the way that string values are assigned to string variables. String
variables and string-valued functions are declared with either the <bit attribute>,
{character attribute> or <picture attribute> as described in Section 5.

A variable declared with a {picture attribute> is ja pictured character-string
variable. It differs from nonpictured character-string variables only in the
way values are assigned to it and in the way its values are converted. A
function declared to return a pictured value returns a character-string value.
That value differs from other character-string values only in the way it is
converted. The length of a pictured character-string value can not exceed 6
characters,

Refer to Section 8 for a discussion of conversion. Refer to paragraph 2.6.2.1
for the syntax of a <bit-string constant> and to paragraph 2.6.2.2 for the
syntax of a <character-string constant>.

4.1.7 Locator Data

A locator value identifies a generation of storage of a variable. A locator is
analogous to, but not necessarily the same as, a machine address. A locator can
identify the storage of any variable, regardless of its data type or itsrelationship
to its containing aggregate. The null locator value is a unique value that does
not identify a generation of storage. It can be assigned to locator variables
and can be used in locator comparison.

A locator loses its validity when the generation of 3torage it identifies is
freed. Such locators do not automatically receive the null locator value.

It is an error to use an invalid or null locator as a <locator qualifier> in a
<reference> to a based variable. Refer to paragraph 6.6 for a discussion of
<{locator qualified referenceds.

4 locator datum has no <literal constant> representation in the text of an
<external procedure>, but the null locator value is returned by the null built-in
function.

There are two types of locator data in PL/I: pointer data and offset data.

3/81 4-3 AG94E

A pointer value identifies a generation of storage within any storage class. 1In
addition to the situations described previously in this section, a pointer value
is invalid when it is used as a <locator qualifier> or in a comparison operation
within a process other than the process that created it. If a pointer value is
created within a run unit, it may only be used within that run unit.

An offset value identifies the storage generation of a based variable allocated
within an area variable. An offset value is a relative locator value identifying
the generation of storage with respect to the area variable in which the generation
is allocated.

An offset value is valid when used in any Multics process or run unit that also
has valid access to the area variable.

Locator variables and locator-valued functions are declared with the <{pointer
attribute> or <offset attribute> as described in Section 5.

4.1.8 Area Data

An area value is a generation of storage in which based variables can be dynamically
allocated by the execution of an <allocate statement>. In Multies PL/I, an area
has a size that is the number of 36-bit words occupied by the generation. The
amount of space available within an area in Multiecs PL/I and the amount occupied
by each generation allocated within an area are given in the MPM Subsystem
Writer's Guide. .

Areas maintain their validity when accessed in a Multics process other than the
process in which they were created. In order for the process to access the
generations allocated within an area, offset locator values must be used because
pointer values are invalid when used in a process other than the process that
created them.

Area variables and area-valued functions are declared with an <area attribute>
as described in Section 5.

4.1.9 Label Data

A label constant identifies a <statement> within the text of an {external procedure).

An <identifier> 13 declared as the name of a label constant by appearing as a
<declared name> in a <label prefix> on any <statement> other than an <entry
Statement>, <{procedure statement> or <(format statement>. Refer to Section 5 for
a discussion of declarations.

A label constant is transformed into a label value each time it is referenced
during program execution. A label value 1s, therefore, always derived from a
label constant. A label value identifies the same <{statement> as the label
constant from which it was derived, but it also points to an activation record.
The activation record pointed to by a label value is determined when the label
constant is transformed into a label value.

When a label constant is transformed into a label value by the evaluation of a
<{reference> in the same <block> in which the label constant is declared, the

activation record pointer assigned to the label value points to the activation
record of the current block activation.

7/78 4.4 AG94B

When a label constant is transformed into a label value by the evaluation of a
<{reference> in a <block> contained within the <block> 1in which the 1label
constant is declared, the activation record pointer assigned to the label value
points to the first activation record of the declaring <block> found by
following the parent pointer of the block activation making the transformation.
Refer to paragraph 3.3 for a discussion of block activation and the parent
‘pointer.

A label value retains its validity only as long as the block activation record
that it points to remains active. It is an error to reference a label value
that has lost its validity.

Both the <{statement> identification and the activation record pointer values of
a label value are used in label value comparison. Two label values compare
equal only if they identify the same <statement> and the same activation record.

Label variables and label-valued funetions are declared with the <label
attribute> as described in Section 5. .

4.1.10 Format Data

A format constant identifies a <format statement> within the text of an
{gxternal procedure>.

An <identifier> is declared as the name of a format constant by appearing as a
<declared name> in a <label prefix> on a <format statement>. Refer to Section 5
for a discussion of declarations.

A format constant is transformed into a format value each time it is referenced
during program execution. A format value is, therefore, always derived from a
format constant. A format value identifies the same <format statement>
identified by the format constant from which it was derived, but it also points
to an activation record. The activation record pointed to by a format value is
derived in the same manner as that of a label value.

A format value retains its validity only as long as the activation record that
it points to remains active. It is an error to reference a format value that
has lost its validity.

Both the <statement> identification and the activation record pointer values of
a format value are used in format value comparison. Two format values compare
equal only if they identify the same <statement> and the same activation record.

Format variables and format-valued functions are declared with the <format
attribute> as described in Section 5.

4.1.11 Entry Data

An entry constant identifies an entry point to a <procedure>. An external entry
constant identifies an entry point of an <external procedure> and an internal
entry constant identifies an entry point of a nested <procedure>.

An <identifier> is declared as the name of an entry constant by appearing as a
{declared name> in a <label prefix> on an <entry statement> or {procedure
statement>. External entry constants that identify entry points into other
<{external procedure>s must be declared by a <declare statement>.

45 AG9Y

An entry constant is transformed into an entry value each time it is referenced
during program execution. An entry value is, therefore, always derived from an
entry constant. An entry value identifies the same entry point as the entry
constant from which it was derived, but it alsc points to an activation record.
If the entry value identifies an external entry point the activation record
pointer is null. If the entry value identifies an internal entry point the
activation record pointer is determined when the entry constant is transformed
into the entry value. :

When an internal entry constant is transformed into an entry value by the
evaluation of a reference in the same <block> in which the entry constant is
declared, the activation record pointer assigned to the entry value points to
the activation record of the current block activation.

When an internal entry constant is transformed into an entry value by the
evaluation of a <reference> in a <block> contained within the <bloek> in which
the constant is declared, the activation record pointer assigned to the entry
value points to the first activation record of the declaring <block> found by
following the parent pointer of the block activation making the transformation.
Refer to paragraph 3.3 for a discussion of block activation and parent pointer.

It is an error to invoke an internal <procedure> with an entry value that points
to an activation record that has been freed. The most common circumstance in
which this occurs is when an internal entry constant is assigned to an entry
variable by an activation of the <bloeck> in which the entry constant was
declared, and control returns from the block activation that made the
assignment. Subsequent use of the entry variable to invoke the internal entry
is an error because the activation record pointed to by the entry value was
freed by the return.

Both the entry point and the activation record pointer values of an entry value’
participate in entry value comparison. Two entry values compare equal only if
they identify the same entry point and the same activation record.

External entry constants, entry variables and entry-valued functions are
declared with the <entry attribute)> as described in Section 5.

4.1.12 File Data

A file wvalue identifies a file-state block. A file constant always identifies
the same file-state block, but a file variable can identify any file-state
block. A file-state block is a composite value that defines the relationship
between the program and a data set.

A program has as many file-state blocks as it has file constants. A file value
can be assigned to a file variable and functions can return file values. File
description attributes can only be declared for file constants because they are
properties of the file-state block and not properties of the file value.

A file-state block includes:

File description attributes.

The open/closed status.

Line size.

Page size.

Page number and line number.

The column position.

Record designators and stream position.
A data set designator (title).

.

L Y

OO WM =

The components of a file-state bloeck may change during program execution as the
relationship between the program and the data set changes.

PN AG9YU

A file-state block identifies a data set by the value of the title or data set
designator. The value is set when a file is opened and remains unchanged until
the file is closed. It is possible for a given file-state block to identify
several data sets during program execution; but in any given opening, the
file-state block identifies a single data set.

File constants, file variables, and file-valued functions are declared with a
<file attribute> as described in Section 5. Refer to Section 11 for a
discussion of input/output and a more detailed description of file-state blocks.

4,2 Aggregates of Data

Each of the data types discussed in paragraph 4.1 is the data type of a scalar
value. An aggregate value 1is a set of scalar values stored as an ordered
sequence. An aggregate value is either an array of scalar values, a structure
containing scalar and/or aggregate values, or an array of structure values.

Named constants, variables, functions, and expressions can have aggregate
values.

The data type of an aggregate value is the ordered set of data types of its
scalar components. The aggregate type of an aggregate variable, named constant,
or function value 1is the dimensionality and array-extents specified by the
{dimension attribute> and the structuring specified by the <level>s used in its
declaration. The <levelds are ad justed so that they are minimal and each
array-extent is given by H-L+1, where L is the lower <bound> and H is the upper
<{bound>. Refer to Section 5 for a discussion of <level>s and <bound>s.

The aggregate type of an expression is the dimensionality, array-extents, and
structuring determined by the rules of expression evaluation given in Section 7
and by the rules of aggregate promotion given in Section 9.

The aggregate type of a <referenced to a structure variable contained in an

. <assignment statement) containing a <by-name option>, but not contained in a
<locator qualifier>, {subseript>, or <argument list> is determined according to
the rules given in paragraph 12.2.

4.2.1 Arrays of Scalars

An array of scalars is an n-dimensional set of scalar values that all have the
same data type. The scalar components of an array are elements of the array,
and are identified by their position within the array by subscripts. For
example, The (i, j)th element of a two-dimensional array is in the ith position
of the 1st dimension and the Jth position of the 2nd dimension. Refer to
paragraph 6.2 for a disecussion of {subscripted reference>s.

The elements of an array are stored as an ordered sequence in row-major order.
This means that when the elements are accessed in the order in which they are
stored, the rightmost Subscript varies most rapidly and the leftmost subscript
varies least rapidly.

Named constants, variables, funections, and expressions can have array: of
scalars as values. Only named constants and variables can be subscripted,

T/79 47 AG94cC

This page intentionally left blank.

T/79 AG94C

The array-extent of each dimension of an array variable is determined when
storage for the array variable is allocated. The array values assigned to the
variable must have the same aggregate type as the variable, that is they must
have the same number of dimensions and the same array-extents as the variable
had when it was allocated.

All array values yielded by a given expression or function have the same number
of dimensions, but the array-extent of each dimension may, in some cases, change
from one evaluation to the next.

7/79 4=7.1 AG94C

4.2.2 3Structures

A structure is a hierarchically ordered set of 'scalar and aggregate values thnat

d¢ not necessarily have the same data type. The 1immediate components of a
Structure are members of the structure and are ordered from left to right. The
outermost structure is the major structure, and nested structures are

substructures.

Variables, functions, and expressions can have structure values, but only the
members of variables can be referenced by name. Members of structure variables

are referenced by <structure qualified referenceds as described in paragraph
u. 4.

The hierarchical order of a structure variable or function value is specified by
means of <level>s similar to the section numbers used in this manual. The
ocutermost structure is known as the level-one structure, its members are known
as level-two members. If one of the level-two members is a substructure, its
members are level-three members, etc.

All structure values assigned to a structure variable must nave the same
aggregate type as the variable. All structure values yielded by a given
expression or function have the same aggregate type, except that the
array-extent of each dimension may, in some cases, change from one evaluation to
the next.

4.2.3 Arrays of Structures

An array of structures is an n-dimensional set of structure values each of which
nas identical structuring and identical data types. The elements of an array of
structures are known by their position within the array and are referenced with
subscripts as are elements of arrays of scalars. Like the elements of an array
of scalars, the elements of an array of structures are stored in row-ma jor
order.

Variables, functions, and expressions can have arrays of structures as values.
Only the elements of variables can be subscripted.

All array of structure values yielded by a given expression or function have the
Same aggregate type, except that the array-extent of each dimension may, in some
cases, change from one evaluation to the next.

4.3 Storage of Data

4.3.1 Packing and Aljignment of Variables

The <aligned attribute> and the <unaligned attribute> are declared for scalar
and aggregate variables as described in Section 5. The precise effect of the
<aligned attribute> and the <unaligned attribute)> on the packing and alignment
of a variable's values in storage is not defined by the language, but the rules
governing the use of these <attributed>s are designed to ensure that programs
using them will run correctly in different implementations of PL/I on different
computers. In the discussion that follows the effects of these <attribute>s on
the packing of data in Multies PL/I are described.

Packed and unpacked are terms that describe the representation of values and the

efficiency of access of values. Packed and. unpacked are not <attributeds and
cannot be used in declarations.

4-8 AG94

An arithmetie, nonvarying string, or pointer variable declared with the
{unaligned attribute> is a packed scalar variable. An aggregate variable
consisting entirely of packed scalar and packed aggregate variables and declared
with the <unaligned attribute> is a packed aggregate variable.

An arithmetic, nonvarying string, or pointer variable declared with the <aligned
attribute> is an unpacked scalar variable. Varying string, offset, entry, °
label, file and area variables are unpacked scalar variables regardless of which
alignment attribute they are declared with.

An aggregate variable containing an unpacked scalar or unpacked aggregate
variable, or an aggregate variable declared with the <aligned attribute> is an
unpacked aggregate variable. Therefore, an unpacked structure can contain both
packed and unpacked members, but a packed structure consists entirely of packed
members.

4.3.1.1 Packing and Alignment of Scalar Variables

A packed scalar variable occupies the minimum number of bits necessary to
represent its values. If a packed scaler variable is declared with the
<unsigned attribute>, no storage is used to store its sign. An unpacked scalar
variable is stored in such a way as to facilitate access to 1its values. In
Multies PL/I, unpacked variables are aligned on word or multiple-word
boundaries, and occupy an integral number of words.

Example:

declare A fixed binary precision(8) unaligned;
declare B pointer unaligned;

declare C fixed binary(38) aligned; -

declare D pointer aligned;

In Multics PL/I, both A and B are packed scalar variables. A occupies 9 bits of
storage and B occupies 36 bits. Both C and D are unpacked scalar variables,
each occupies 2 words of storage and each is aligned on an even Storage address.

-

4.3.1.2 Packing and Alignment of Structures

-

A packed structure, which is not a packed array of structures, contains no
unused bits between its members except those bits necessary to make
character-string, decimal arithmetic, or pictured values begin on 9-bit byte
storage boundaries. A packed structure is aligned on a 9-bit byte storage
boundary if any of its members are so aligned.

An unpacked member of a structure is aligned on a storage boundary that
facilitates access to the member and occupies an integral number of words of
storage. An wunpacked structure is aligned on a storage boundary that is the
maximum boundary required by any of its members and occupies an integral number
of words. A packed member of a structure begins on the next bit or 9-bit byte
following the previous member.

Example:

declare 1 S,
2 A bit(6) unaligned,
2 B character(3) unaligned,
2 C bit(8) aligned,
2 D bit(18) unaligned;

In Multies PL/I, S is an unpacked structure because it contains an unpacked
member C. S occupies 90 bits of three words; the first 6 are occupied by A, the
next 3 are unused, the next 27 are occupied by B, the next 36 are occupied by C,
and the last 18 are occupied by D. The remaining bits of the third word are
unused.

T7/78 4-9 AG94B

4.3.1.3 Packing and Alignment of Arrays

A member of a dimensicned structure is an array whose dimensionality is that
given by its own <dimension attribute>, if it has one, and that supplied by the
{dimension attributed>s of all containing structures. If a dimensioned structure
contains more than one member at the same structuring level, those members are
interleaved arrays because the storage for their elements is interleaved.

Example:
declare 1 S(3),2 A,2 B;

The elements of A and B are interleaved as follows:
AC1) B(1) A(2) B(2) A(3) B(3)

An unconnected array is an array whose elements are separated from one another
in storage by other values. An interleaved array is an unconnected array. A
defined array, a parameter array and an array cross-section may also be
unconnected arrays. Isub defining is discussed in paragraph U4.3.3.4 and
cross-paragraph references are described in paragraph 6.3.

Example:

declare A(3,3);
declare B(3) defined(A(1sub,1sub));

The array cross-section A(*,2) and the defined array B are ©both unconnected
arrays because their elements are separated from each other by other elements of
the array A.

A connected array is an array whose elements are not separated from one another
in storage by other values. A connected array of packed scalar elements
contains no unused. storage bits between its elements.

Example:

declare A(5) character(2) unaligned;

In Multics PL/I the array A is a packed connected array and occupies 90 bits of

A connected array of packed structures contains no unused storage between its
elements except those bits necessary to make character-string, decimal
arithmetic, and pictured values begin on 9-bit byte storage boundaries.

A packed unconnected array of scalars contains no unused storage between its
elements, except the storage occupied by the other variables.

A packed unconnected array of structures contains no unused storage between
elements, except for the storage occupied by other variables and the storage
necessary to ensure that contained character-string, decimal arithmetic, and
pictured variables begin on 9-bit byte boundaries. '

An element of an unpacked array of scalars or structures begins on a storage

boundary that facilitates access to the element and occupies an integral number
of words of storage.

T7/78 4-10 AG94B

4.3.1.4 Sign Types

Real arithmetic data may be stored in variables with or without a sign. The
sign type of a variable determines whether or not it includes a sign. If the
variable is declared with the <unsigned attribute>, its sign type is unsigned;
otherwise, if the variable is arithmetic, its sign type is signed. If the
variable is not arithmetic, it has no sign type. The sign type of a variable
affects the amount of storage it occupies only if it is packed.

T/78 4-10.1 AG94B

This page intentionally left blank.

T7/78 AGI94B

4.3.2 Storage Classes

4.3.2.1 Allocation of Storage

A generation of storage is an ordered sequence of bits of sufficient length to
represent all of the values within the range permitted by a variable's data
type. Each variable is declared with one of the following storage class
attributes: the <automatic attribute>, {static attribute>, <based attribute>,
<controlled attribute>, <parameter attribute>, or <defined attribute> as
described in Section 5.

A storage class is a mechanism for allocating and freeing generations of storage
for a variable. Because each variable has a single storage class, variables are
characterized by their storage class and are referred to as: automatic
variables, based variables, etc.

Components of a structure are allocated when their containing major structure is
allocated. A generation of storage for a structure variable contains a
generation of storage for each of its members. A generation of storage for a
component of a structure is freed only when the storage of its containing major
structure is freed.

The allocation of a generation of storage for a variable consists of performing
the following steps in the indicated order.

1. Evaluate each <extent expression> specified in the variable's declaration
and convert its value to a real, fixed-point, binary, integer.

2. Determine the amount of storage required by examining the data type, sign
type, alignment <attribute>s, and the evaluated extents from step 1.

3. Allocate a generation of storage of sufficient size. 1If the variable being
allocated is not based, associate the newly allocated generation with the
name of the variable. If the variable being allocated is based, assign a
locator value that identifies the newly allocated generation to the locator
variable given by the <set option> of the <statement> that caused this
allocation to occur. :

4. If the variable is an area, set it to the empty state.

5. If the variable being allocated is based, assign each evaluated extent to
the variable identified by its <refer option>, if it has one.

6. Evaluate each <initial attribute> specified in the variable's declaration
and assign initial values to the newly allocated generation.

4.3.2.2 Automatic Storage

A generation of storage 1is allocated for each automatic variable declared in a
given <block> each time the <block> is activated. The generation is allocated
in the block activation record as described in paragraph 3.3.1. The block
activation record is freed when the block activation for which it was allocated
is deactivated. Recursive activation of a <bloeck> has the effect of stacking
generations of the <block)>'s automatiec variables.

The <extent expression>s and <initial attributeds of an automatic variable can
contain <expression>s whose values are computable upon block activation. A
value 1is computable upon block activation if it can be computed without
referencing any automatic or defined variable declared in the <block>.

7/78 4-11 AG94B

The <extent expression>s are evaluated and stored in the activation record.
Subsequent references to the generation of the automatic variable use these
evaluated extents.

4.3.2.3 Static Storage

A single generation of storage is allocated for each static variable at or
before the time that the variable is first referenced within the process or run
unit. The generation remains allocated until termination of the process or run
unit.

Statie wvariables must have constant <extent expression>s and <initial
attribute>s because they may be allocated prior to block activation.

Internal static variables are variables whose scope has been declared internal
by the use of an <internal attribute>. Multics PL/I allocates these variables
at compile time. .

External static variables are variables whose scope has been declared external
by the use of an <external attribute>. External static variables are allocated
when they are first referenced within a process or run unit. Refer to Section 5
for a discussion of scope, and to the Multies PL/I Reference Manual for a
discussion of external storage allocation.

4.3.2.4 Controlled Storage

A generation of storage is allocated for a controlled variable when an <allocate
statement> containing an <allocation> <containing an <allocation reference)> that
identifies the controlled variable is executed. The generation is allocated in
"system storage"™. Refer to paragraph 12.1.

The most recently allocated generation of a <free reference> that identifies the
controlled variable is executed. All generations of controlled storage not
explicitly freed by the execution of a <(free statement> are freed upon process
or run unit termination. Refer to paragraph 12.13.

The <extent expression>s and <initial attribute>s of a controlled variable can
contain <expression>s whose values are computable without depending on any value
of the same controlled variable. No <extent expression> or <initial attribute>
of any member of a controlled structure can depend on the value of any scalar
component of the same major structure.

The evaluated extents used to allocate a given generation of a controlled
variable are saved with the generation. These extents are wused whenever a
reference is made to the generation. The <extent expression> specified in the
variable's declaration are not reevaluated for each reference to the controlled
variable. If multiple generations are allocated for a given variable, they are
stacked such that a reference to the controlled variable always references the
most recently allocated generation. When that generation 1is freed, the next
most recently allocated generation becomes the current generation.

4.3.2.5 Based Storage

A generation of storage is allocated for a based variable when an <allocate
statement> containing an <allocation> containing an <allocation reference> that
identifies the based variable is executed. If the <allocation> contains an <in
option> or derived <in option>, the generation is .allocated in the storage of
the area variable specified by the <in option>; otherwise, the generation is
allocated in "system storage". Refer to paragraph 12.1.

T/78 : =12 AG94B

A generation of an explicitly allocated based variable is freed when a <free
statement> containing a <freeing> containing a <free reference)> containing a
{locator qualifier> that identifies the generation is executed. Freeing the
storage of an area frees the storage of all generations allocated within the
area. (Generations of based storage allocated within ."system storage" and not
explicitly freed by the execution of a <free statement> are freed upon process
or run unit termination. Refer to section 12.13. . ’

The program is in error if the generation identified by the <locator qualifier>
contained in the <freeing> contained 1in the <free statement)> used to free the
generation was not allocated by the execution of an <allocate statement>
containing an <allocation> containing an <allocation reference> that identified
a based variable of identical aggregate %fype, data type, sign type, alignment,
and extents.

The program is also in error if the generation being freed was allocated in an
area and the <freeing> contains an <in option> that does not specify the same
area. Similarly, the program 1is in error if the generation was allocated in
"system storage" and the <{freeing> contains an <in option>.

A based variable is a description of a generation of storage, but no generation
is ever directly associated with the name of the based variable. The specific
generation of storage accessed by a <reference> to a based variable is specified
by a locator-valued <expression> used as a <locator qualifier> in a <locator
qualified reference>. Refer to paragraph 6.6.

Syntax:
{locator qualified reference>::= <locator qualifier><>
<based reference>
Example:
P->R
P identifies a generation of storage whose data type, sign type, alignment,
extents, and aggregate type are described by R.

If the value of P was derived from the evaluation of an "addr" or nonstandard
Multics built-in function, the generation is an equivalenced based generation.
Refer to paragraph 4.3.3.2.

If the value of P was derived from the execution of an <allocate statement>,
{locate statement>, or <read statement> containing a <{set option>, the
generation is an explicitly allocated based generation. Refer to paragraph
4.3.2.1.

Equivalenced based generations are freed when the generation to which they are
equivalenced is freed. Explieitly allocated based generations are freed as
described in paragraph 4.3.2.1.

The <extent expressionds in the declaration of a based variable are evaluated
for each {reference> to the Dbased variable. It 1is the programmer's
responsibility to ensure that these <extent expression>s accurately describe the
extents of the generation referenced by the based variable.

The <extent expression>s and <initial attribute>s of a based variable can
contain <expression>s whose values are computable without depending on any
values of the same generation of the based variable. No <extent expression> or
<initial attribute> of any member of a based structure can depend on the value
of any scalar component of the same major structure generation, except for the
dependencies expressed by a <refer option>.

The <refer option> allows the extent value used by references to the based
variable to be defined by the generation being referenced. The <refer option>
can only be wused in the <extent expression>s of members of based structures.
Such structures are self-defined structures.

T/78 4-13 AG94B

Syntax:

{extent expression>::= <expression>[<refer option>]

Krefer option>::z refer(<reference>)
Constraints:
Evaluation of the <expression> must yield a scalar value suitable for conversion
to a fixed=-point, binary, real integer. It must also be suitable for conversion
to the data type of the variable identified by the <reference> in the <refer
option>.

The <reference> in the <refer option> must identify a preceding scalar component
of the same major structure that contains the <refer option>.

The variable .identified by the <reference> 1in the <refer option> must not be
dimensioned, and thus cannot have any inherited dimensions.

The <reference> in the <refer option> cannot be a <locator qualified reference>.
Example:
declare 1 S based,

2 K fixed,

2 A char(N refer(S.K)); .
The explicit allocation of a generation of S by the execution of an <allocate
statement> causes N to be evaluated to determine the required amount of storage.
The storage is allocated and the value of N 1is assigned to P->S.K where P
identifies the generation.

A <locator qualified reference> to S.A uses the value of S.K as the length of
S.A.

Example:
P->S.A Q->S.A
This example shows two generations of S.A, each identified by a unique locator

value. Tne length of the first generation of S.A is P->5.K, while the length ot
the second generation of S.A is Q->S5.K.

4.3.3 Storage Sharing

The language provides three mechanisms for sharing a generation of storage among
two or more variables.

1. parameters
2. based variables
3. defined variables

All of these mechanisms require that the variables that share a generation of
storage have identical data types, sign types, and alignment <attribute>s. This
requirement ensures that the variables have identical storage representations.

All three mechanisms provide techniques for sharing a generation of storage that
is contained in an aggregate generation without having to share the entire
aggregate. For example, scalars can be mapped onto array elements or members of
structures, etc.

A variable declared with a <picture attribute> is considered to match only
variables declared with equivalent pictures. Two pictures are equivalent if
they are translated into identical <normal pictures> as described in paragraph
g8.2.12.

T7/78 4-14 AG94B

P = addr(a(3));

PZ>§ Is a valid <reference> to A(3), and P->S.X is a valid <reference> to
A(3).X.

4.3.3.1 Storage Sharing by Parameters

The discussion of argument passing in paragraph 6.10 describes argument passing
by-value and by-reference, When a variable is passed by-reference to a
parameter, the variable and the parameter refer to the same generation of
storage and thus share that generation.

Example:
call f(X); f: proc(Y);
Juring the block activation of f caused by the execution of "ecall £{X);", X and

Y both refer to the same generation of storage.

4.3.3.2 Storage Sharing by Based Variables

Since the locator valuye identifying a generation of a variable in any storage
class can be derived by the use of the addr built-in function, it is possible
for a based variable to be effectively equivalenced to a generation in any
storage class.

Example:

declare A automatic;
declare B based;

P = addr(a);
P->B = T;

The value of A after execution of the last <assignment statement> is seven.

It is also possible for several based variables to be referenced using the same
locator value, thus effectively equivalencing all of those based variables to
the same generation of storage.

Example:
Q=->X Q=->Y Q->2

In this example, the based variables X, Y and Z are equivalenced to the
generation of storage identified by Q.

If the referenced generation and the based variable used toc reference it satisfy
the criteria for simple defining given in paragraph 4.3.3.5, the based variable
can access the generation. 1In this case, the data type, sign type, alignment,
aggregate type, and extents must match.

Example:

declare 1 A(S5),
2 X,
2

?

<

declare 1 S based,
2
2

LI

.

T/78 4-15 AG94B

If the referenced generation and the based variable used to reference it satisfy
the criteria for string overlay defining given in paragraph 4.3.3.6, the based
variable can access the generation. In this case, the data types must match,
except that pictured data and nonpictured character-string data types are
considered to match. The aggregate types do not have to match.

Example:

declare A(5) character(1);
declare B character(5) based;
P = addr(A);

P->B = "abecde”

The last <assignment statement> in this example sets the array A to the value

"abede. The first element of the array has the value "a" and the last element
has the value "e™.

A based structure declaration may be used as a description of a portion of the
referenced generation without desecribing the entire generation. If the
generation does not meet the criteria for string overlay defining as described
in paragraph 4.3.3.6, the based structure must match the referenced generation
from left-to-right up to and including all members contained within level-twg of
the item being referenced.

Example:
declare 1 S, declare 1 T based, declare 1 X based,

2 A, 2 A, 2 A,

2 B, 2 B, 2 B,

3¢C, 3¢C, 3¢C;

30D, 3 D;

2 E,

ete

P = addr(S);

A <reference> to P->T.B.C is a valid <reference> to S.B.C, but a <reference> to
P->X.B.C is not valid because the declaration of X does not describe all of the
level-two substructure S.B.

A based variable cannot access the storage of an unconnected array.

A based variable cannot access the storage of a parameter, except during the
block activation to which the storage was passed as an argument. For example,
it is an error to take the "addr" of a parameter and assign the resulting

locator value to static storage and subsequently, in another block activation,
use the locator value.

4.3.3.3 Storage Sharing by Defiped Varigbles

The purpose of the <defined attribute> and the <{position attribute> is to map a
defined variable onto a generation of storage of another variable. Three types
of mapping are possible:

simple defining

isub defining
string overlay defining

4-16 AGo4

Syntax:
<defined attribute>::z {defined!def}<base reference>
<{base reference>::z (<reference>)!<reference
<position attribute>::= {position!pos}[(<position>)]

{position>::= <expression>

The <extent expression>s of a defined variable are evaluated upon block
activation and saved in the block activation record. Consequently, they must
satisfy the criteria given in paragraph 4.,3.2.2 for the extents of automatic
variables.

Since a defined variable is associated with the generation identified by its
<{base reference>, it is never allocated and has no {initial attribute>.

The variable identified by the <base reference> cannot be a défined variable or
named constant.

The <defined attribute> cannot be specified for members of structures. When
specified. for a structure, it maps the entire structure onto the generation of
storage identified by the <base reference).

Both the extents of the defined variable and those of the base variable, are
used to determine if the subscriptrange, stringrange or stringsize condition has
occurred. Refer to Section 10. ’

The <expression>s contained 1in the <base reference> are evaluated for each
reference to the defined variable. Any <reference>s in the <base reference)> are
resolved in the <block> in which the defined variable is declared. Refer to
Section 6 for a complete discussion of <reference) resolution and evaluation.

4.3.3.4 1Isub Defining

Isub defining allows an array to be defined onto another array by means of a
programmer-defined mapping between the elements of the defined array and 1its
base array.

The <defined attribute> specifies isub defining if the <base reference> contains
any <isub>s in its <subsecript>s.

A <subscripted reference> to an element of an isub-defined array is mapped into
a <subscripted reference> to the base array by replacing each <isub> in the
<base reference> with the ith {subscript> used in the <subscripted reference> to
the defined variable. There must be an <isub> for each dimension of the defined
variable or the program is in error. Each <subscript> is converted to a binary
integer before replacing an <isub>.

Example{

declare A(3,3);
declare B(3) defined(A(1sub,1sub));

The array B is a three element array whose elements constitute the diagonal of
the array A. A <reference> to B(K) is equivalent to a <reference> to A(K,K).

An unsubscripted <reference> to an ‘isub-defined array 1is equivalent to a
cross-section <reference> in which all {subscript>s are asterisks.

T/78 h-17 AGI94B

Example:

declare A(3,3);
declare B(3) defined(A(1sub,isub));

A <reference> to B is equivalent to a <reference> to B(¥) which is squivalent to
a <reference> to the array formed by the elements A(1,1), A(2,2) and A(3,3).

The <position attribute> cannot be used with isub defining.

The data type, sign type, alignment Cattributes>s, string <length>, and <area
size> of the defined array must be identical to the data type, sign type,
alignment <attributes>s, string <length>, and <area size> of the base array. If
the defined variable is a structure, the structuring of the defined variable and
the base variable must be identical, and the data types, sign types, alignment
attribute>s, and extents of all members of the defined wvariable must be
identical to the data types, sign types, alignment {attribute>s, and extents of
their corresponding members in the base structure.

4.3.3.5 3Simple Defining

Simple defining allows a defined variable to share the storage generation
referenced by the <base reference>. The data type, sign type, alignment
{attribute>s, string <length>, and <area size> of the defined variable must be
identical to the data type, sign type, alignment <attribute>s, <string length>,
and <area size> of the generation identified by the <base reference>. If the
defined variable is a structure the structuring of tne defined variable and the
base variable must be identical, and the data types, sign types, alignment
{attribute>s, and extents of all members of the defined variable must be
identical to the data types, sign types, alignment attribute>s, and extents of
their corresponding members in the base structure.

The <defined attribute> specifies simple defining when there are no <isub>s
given in the <base reference>, no <position attribute> specified, and the
attributes and extents of the defined variable match those of the base variable
as described in the previous paragraph.

A {subscripted reference> to a simple-defined array is mapped into a
<subseripted reference> to the base array by replacing the jth asterisk in the
{base reference> with the jth <subscript> used in the <{subscripted reference> to
the defined array. There must be as many asterisks in the <base reference> as
there are <subscript>s in the <subscripted reference> to the defined array or
the program is in error. Each <subscript> is converted to a oinary integer
before replacing an asterisk.

Example:

declare A(3,3);
declare B(3) defined(A(¥,2));

A <subscripted reference> to B(K) is mapped into a {subscripted reference> to
A(K,2).

An unsubscripted <reference> to a simple-defined array variable is equivalent %o
a cross-section <reference> to the defined array variable in which all of the
{subscript>s are asterisks.

Example:

declare A(3,3);
declare B(3) defined(A(%*,2));

The <reference> B is equivalent to B(*), which is equivalent to a <reference> to

the array formed from the elements A(1,2), A(2,2), and A(3,2).

T/78 4-18 AG9LB

4.3.3.6 String Overlay Defining

String overlay defining allows a string variable (aggregate or scalar) to be
defined onto_the storage of another string variable (aggregate or scalar) such

There are two types of String overlay defining: bit-string and character-string.
Bit string overlay defining allows a bit-string variable to share storage of
another bit-string variable while character-string overlay defining allows a
character-string variable to share storage with another character-string variable.

The <position attribute) specifies bits when used for bit-string defining and
characters when used for character-string overlay defining.

If the criteria for isub defining or simple defining are not met, the criteria
for string overlay defining must be satisfied or the program is in error.

The dgfined variable and the base variable meet the critgria for string overlay

It is an error to use the {position attribute> in isub or simple defining. 1If
it is omitted from string overlay defining, a position value of one is assumed.
It is also an error to use an asterisk in the <base reference> of the <defined
attribute> in string overlay defining.

The <expression> in the {position attribute) is evaluated for each {reference>
to the defined variable. - .

Let i be the value of the {expression> in the <{position attribute>. Let b be
the <base reference>. Let n be length(string(b)). Let d be the Kreference> to
‘the defined variable. Let J be length(string(d)). The following inequality
must be satisfied: 05i-1$j+i-15n.

Example:

declare A(5) character(2) unaligned;
declare 1 B defined(4),

2 X character(5) unaligned,

2 Y picture™399ggn unaligned;

A <reference> to B.X is a {reference> to the first two and one half elements of

A and a <reference> to B.Y is a Kreference> to the last two and one half elements
of A.

3/81 ' 85-19 AGYUE

SECTION 5

DECLARATIONS

An <identifier> may be used as a keyword or as the page of a’ variable, named
constant, built-in function, generic function, or condition. A given
<identifier> can be used both as keyword and as a name. The meaning of a name
is determined by a declaration of the name. Each declaration is established in
a <block> and is accessible throughout a region of the program known as the
scope of the declaration or the scope of the name.

5.1 Seco Degla

The scope of a name is the <bloeck> in which it is declared and all contained
<block>s in which the name is not redeclared. Refer to Section 2 for a
discussion of program structure.

Note that the above definition of scope does not strietly apply to declarations
of members of structures. Refer to paragraph 6.4 for a discussion of the scope
of member's names.

A name cannot be declared more than once in a given <block>, except as the name
of a structure member. No two members of a structure can have the same name. A
declaration that violates either of these constraints is a multiple declaration
and is an error. .

5.1.1 tern cope

A declaration containing the <internal attribute) is the declaration of a name
whose scope is jnternal. The name is known only in the <block> in which it is
declared and all contained <block>s, except those <blockd>s in which it is
redeclared.

5.1.2 External Scope

A declaraticn containing the <external attribute> is the declaration of a name
whose scope is external. The name is known in all <block>s in which the same
name is declared with the <external attribute> and in all contained <block>s,
except those <block>s in which it is redeclared with the <internal attribute>.
All declarations of an external name must have equivalent <attribute set>s, and
all such declarations refer to the same generation of storage, the same
constant, or the same condition.

5«1 AG94

5.2 Establishment of Declarations

This paragraph describes the transformations made to the text of an <external
procedure> during compilation in order to establish complete declarations for
all names and <literal constant>s used in the <external procedure>. The
transformations are made in this strict order:

1. Each <procedure statement> that has more than one label prefix> is
transformed into a <procedure statement> followed by a sequence of <entry
statement>s. Each <procedure statement> or <entry statement> thus
generated has one <label prefix> and have identical <parameter list>s and
{procedure option>s.
tach <entry statement> that has more than one <label prefix> is transformed
into a sequence of <entry statement>s each of which has one <label prefix>,
and all <entry statement>s have identical <parameter 1list>s and <entry
option>s.

2. Each <get statement> that has no <file option> and no <{string option> is
given a <file option> of the form:

file(sysin)

Each <put statement> that has no <file option> and no {string option> is
given a <file option> of the form:

file(sysprint)

Each <copy option> without a <reference> is given a <reference> of the
form:

sysprint

3. Each <declare statement> is defactored as described in paragraph 5.2.1.1.

4. Each <like attribute> is expanded as described in paragraph 5.2.2.

5. Declarations are established for all names, <literal constant>s and
<descriptor>s. These declarations are derived from <declare statement>s,
<{label prefix>s, <parameter descriptor>s, <returns descriptor>s, <literal
constant>s, and <simple reference>s to undeclared names.

6. The <attribute set> of each declaration is completed by evaluating <default
statement>s, by applying the language default rules, and by creating
<parameter descriptor>s and possible <returns attribute> for each entry
declaration produced by a <label prefix>.

7. Each declaration is validated as described in paragraph 5.5.

5.2.1 Dee nt

Each <declare statement> is processed by the compiler and behaves like a <null
statement> when executed.

Syntax:

<{declare statement>::= [<label prefix>]...{declare!del}
<declaration 1list>;

<declaration list>::= <declaration component>
[,<declaration component>]...

<declaration component>::= [<level>]{<declared name>!
(<declaration list>)}[<attribute set>]

5=2 AG94

{declared name>::= <identifier>
{attribute set>::= <attribute>...

(level>::= <decimal integer>

5.2.1.1 Defactoring of Declare Statements

Each <declare statement> is transformed into a {defactored declare> by
performing the following steps in the indicated order:

1. Copy the <level> that appears immediately to the left of the innermost
parenthesized <declaration list> to a position immediately to the lef% of
each <{declared name> in that <declaration list>.

2. For each <declared name> in that <declaration list>, if the <declared name>
is 1immediately followed by an <attribute set>, copy the <attribute set>
that appears immediately to the right of the innermost parenthesized
{declaration list> to a position immediately to the right of the <attribute
set> immediately following the <declared name>; otherwise, copy the
aforementioned <attribute set> to a position immediately to the right of
the <declared name>. N

3. Remove the <level> and the <attribute set> from the innermost parenthesized
{declaration 1list> and remove its parentheses. If any parenthesized
{declaration list>s remain, repeat these steps,

The program is in error if the defactoring of a <declare statement> produces a

{statement> whose syntax is not described by that given below for a <defactored

declare>.

Syntax:

<defactored declare>::= [<label prefix>]...{declare!decl}
{defactored declaration>[,<defactored declaration>]...;

{defactored declaration>::= [<level>]<declared name>
[attribute set>]

{attribute set>::z <attribute>...
<level>::= <decimal integer>

{declared name>::= <identifier)

The syntax of each <attribute> is given in paragraph 5.4,
Example:

declare ((a,b pointer)automatic)internal;
is equivalent to:

declare a automatic interna’,
b pointer automatic internal;

Example:
declare 1 s, 2(a,b) pointer;
is equivalent to:

declare 1 s, 2 a pointer, 2 b pointer;

7/78 _ 5-3 AGY4B

5.2.1.2 Multiple Attributes

A given <attribute> may occur more than once in an <attribute set> only if all
but one such occurrence consists solely of a keyword. If the syntax of the
<attribute> requires anything other than a simple keyword, the <attribute>
cannot occur more than once in a given <attribute set).

Example:
declare A entry entry(float),B bit(1) bit(1);

The declaration of B is in error while the declaration of A is valid. Both are
examples of poor programming style.

The example given in paragraph 5.3.2 on the use of the <default statement> shows
how multiple occurrences of a given <attribute> can be useful.

5.2.1.3 Normaljizatijon of Levels

If a <defactored declaration> has a <level> greater than one, the preceding
{defactored declaration> must have a <level>. 1If a <defactored declaration> has
a <level> equal to one, either it must have a <like attribute> or it must be
followed by a <defactored declaration> with a <level)> greater than its own.
These constraints ensure that a <defactored declaration> with a <level> is
either a structure or a member of a structure, and that all ma jor structures
have a <level)> of one.

A declaration is a level-one declaration if it is not a declaration of a2 member
of a structure. A variable is a level-one variable if it is not a2 member of a
structure.
After defactoring is complete and structuring is established, <level)>s are
normalized so that the <level> of each structure member is one greater than the
{level> of its immediately containing structure. Refer to paragraph 5.2.3.1.3
for a description of structure declarations.
Example:

declare 1 S, 4 A, 3 B, 3 C;
is normalized to:

declare 1 S, 2 A4, 2 B, 2 C;

5.2.2 Expansion of the Like Attribute

Syntax:

<like attribute>::=z like<like reference>

<like reference>::= <identifier>[.<identifier>]...
The <like attribute> is a macro-attribute expanded by the compiler. It is
replaced by a copy of the declarations of all of the members of the structure
identified by the <like reference).
The <like reference> is resolved as if it were a {simple reference> or a
{structure qualified reference>. It must identify a structure declared in a

<block> that contains the <like reference>. Refer to Section 6 for a discussion
of <referenceds. .

5.4 4G94

Within a given <bloek>, all <like reference>s are resolved before any <like
attribute>s are expanded. This ensures that the order in which the declarations
are processed by the compiler does not affect the resolution of <like
reference’s. The program is in error if the structure identified by the <like
reference> was produced by the expansion of a <like attribute> or if it was
declared with a <like attribute). Refer to Section 6 for a discussion of
<{reference’s.

Example:

declare 1 A
declare 1 D
begin;

declare 1 A
declare 1 B

Because the <like reference>s of the <begin block> are resolved before any <like
attribute>s in the <begin block> are expanded, the <like reference> A.C is
resolved to refer to the declaration of A in the outer <block> and the result of
the <like attribute> expansion is:

declare 1 A,2 C,3 G,3 H;

declare 1 B,2 E,2 F; N
The only <attributel>s copied by the expansion of the <like attribute> are those
{attribute>s that were explicitly specified in the declaration of the members of
the structure identified by the <like reference). No 1inherited <dimension
attribute>, <aligned attribute> or {unaligned attribute> is copied. Since
expansion occurs before <attributeds are supplied by default, <attributeds
supplied by default are not copied.

Example:

" declare 1 S(5) based,
2 A bit(1)

Vavy iy

2 B(7) pointer;
declare 1 T like S auto;
The expanded declaration of T is:
declare 1 T auto,
2 A bit(1),
2 B(7) pointer;
A <defactored declaration) containing a <like attribute)> must have a {level> and
cannot be followed by a <defactored declaration) whose <level> is greater than
its own. This constraint ensures that expansion of a <like attribute) produces
<defactored declaration>s of all members of the structure.
Any <level>s copied by the expansion of a <like attribute) are adjusted so that
they are normalized with respect to the <level> of the <defactored declaration>
containing the <like attribute>.
Example:
declare 1 X, 2 Y, 2 Z;
declare 1 S, 2 R, 3 T like 1;
The expanded declaration of T is:

declare 1 S, 2 R, 3 T, 4 X, 4 ¥;

5-5 - ' AG9Y

5.2.3 Establishment of Explicit Declarations

5.2.3.1 Declare Statements

After <declare statement>s have been defactored and <like attribute>s have been
expanded, a single declaration is established for each <declared name> in each
{declare statement>. These declarations are established in the <block> that
immediately contains the <declare statement). The <attribute set> of each
declaration contains only those <attributeds explicitly specified in the
{defactored declaration>. Such declarations are known as explicit declarations.

5.2.3.1.1 De rations of Sca

A <defactored declaration> that is neither an array declaration as described in
paragraph 5.2.3.1.2 nor a structure declaration as described in paragraph
5.2.3.1.3 is a declaration of a scalar variable, scalar constant, builtin
function, generic function, or condition name.

5.2.3.1.2 Declaratjons of Arrays

If the <attribute set> of a <defactored declaration> contains a <dimension
attribute> the <declared name> is declared as an array whose dimensionality and
{bound>s are given by the <dimension attribute).

Members of dimensioned structures are arrays whose dimensionality and <bound>s
include the dimensionality and <bound>s given in their own <dimension
attribute>, as well as those inherited from their containing structures. Unless
the member has its own <dimension attribute>, the member acquires the

dimensionality and <boundds of its centaining structures, but does not acguire
the <dimension attribute> for the purposes of later <default statement)>
evaluation.

Examples:

declare A(10,10);
declare 1 S(10),2 X(10),2 Y;

X and A are ten-by-ten two-dimensional arrays, while S and Y are ten element
one-dimensional arrays. A <default statement> whose <predicate> contained the
keyword "dimension" would apply to the declarations of A, S and X, but not to Y.

5.2.3.1.3 Deglarations of Structures

A <defactored declaration> is a declaration of a structure if it has a <level>
and 1is followed by one or more <defactorer declaration>s whose <levelds are
greater than its own. The <structure attribute)> may be explicitly written in
the <attribute set> of a structure -declaration, but the declaration must also
have a <level> and must be followed by one or more <defactored declaration)
whose <level> is greater than -its own.

A <defactored declaration> with a <{level)> greater than one is a member of the
nearest <defactored declaration> to its left, whose <level> is less than its
own. The <member attribute> may be explicitly written in the <attribute set> of
a member declaration.

5-6 AG94

Example:
declare 1 5,2 4,2 B;
is equivalent to:

declare 1 S structure,2 A member,2 B member;

5.2.3.2 Label Prefixes

An explicit declaration is also established for each <declared name)> that
appears in a <label prefix>. The declaration is established in the <block>
immediately containing the <label prefix>. The <declared name> appearing in the
{label prefix> of an <entry statement)>, <procedure statement>, or <begin
statement> is declared in the <block> that immediately contains the <procedure>
or <begin block>. The declarations produced by <label prefix>s on the <entry
statement>s or <procedure statement> of an <external procedure> are established
in an imaginary outer <block> that contains the <external procedure>.

Example:

A: proc;

B: .
C: proc;
D:
E: entry;
F:
G: end C;

H:

I: end A;

The names B,C,E,H,I are declared in <procedure> A, and since they are not
redeclared in <procedure> C, their scope includes both A and C. The names D,F,G
are declared in <procedure> C and their scope is <procedure> C. The name A is
declared in an imaginary outer <block> and its scope includes both <procedure>s
A and C. - -

5.2.3.2.1 Eormat Constants

A <declared name> appearing in a <label prefix> of a <format statement> 1is
declared in the immediately containing <block> with the <format attribute>,
{constant attribute>, and <internal attribute>.

The <label prefix> of a <format statement)> cannot contain a <prefix subscript>.

5.2.3.2.2 Label Constants

A <declared name> appearing in the <label prefix> of any <statement>, other than
an <entry statement>, <{procedure statement>, or <format statement)>, is declared
with the <label attribute>, <constant attribute> and the <internal attribute>.
If the <label prefix> contains a <prefix subseript>, the declaration is given a
{dimension attribute> of the form (L:H) where L is the lowest <prefix subscript>
used in any occurrence of this name in a <label prefix> within the <block> and H
is the highest <prefix subsecript> used in any occurrence of this name in a
<label prefix> in the <block>. In Multiecs PL/I, a label constant array cannot
have more than one dimension.

5=7 = AG94

Example:

A: begin;
L{1):

L(=2): ____
L(Y4):

end A;

L is declared in <block> A as a label constant array with a lower <bound> of =2
and an upper <bound> of 4.

It is an error to reference any element of a label constant array that is not
defined by a <label prefix>.

5.2.3.2.3 Entry Constants

A <declared name> appearing in"a <label prefix> of an <entry statement> or
<procedure statement> is declared in the immediately containing <block> with the
<entry attribute> and <constant attribute>s, either the <intermnal attribute> or
the <external attribute>, and, optionally, with the <returns attribute>,
<reducible attribute> or <irreducible attribute>.

The <returns attribute> and the <reducible attribute> or the <irreducible
attribute> are copied from the <entry statement> or <procedure statement>. The
{external attribute> is supplied if the <label prefix> appears on an <entry
statement> or <procedure statement> defining an entry to an <external
procedure>; otherwise, the <internal attribute> is supplied.

After <default statement>s have been evaluated and the language default rules
applied to all declarations, a set of <parameter descriptor>s (p1,p2,...,pn) is
created for each entry declaration produced by a <label prefix>. The <parameter
descriptor>s are constructed by examining the declaration of cach paramester cf
the entry. A <parameter descriptor> p(k) produced by this examination contains
all of the <attribute>s of the kth parameter in the <parameter list> of the
<entry statement> or <procedure statement>, except the <variable attribute> and
{parameter attribute>.

The <label prefix> of an <entry statement> or <procedure statement> cannot
contain a <prefix subscript>.

After <default statement>s have been evaluated and the language default rules
applied to all declarations, the <returns attribute> of each declaration
produced by a <label prefix> is copied onto the <entry statement> or <procedure
statement> for use during execution of <return statement>s in that <procedure>.
The original <returns attribute>, if any, on the <statement> is replaced by this
copy.

Example:
P: proc(a) returns(pointer);
EéEIZFE_;-pointer;
Inner: proc(x) returns(bit(1));
EEEIEFE—;.pointer;

end;
end;

5-8 AGI9Y

The <label prefix> Inner produces a declaration equivalent to:
declare Inner entry(pointer) returns(bit(])) internal;

The declaration 1s established in the <external procedure> P. The <label
prefix> P produces a declaration equivalent to:

declare P entry(pointer) returns(pointer) external;

The declaration is established in an imaginary outer <block> that contains the
<external procedure> P.

5.2.4 Establishment of Contextual Declarations

Any name not explicitly declared by a <declare statement> or <label prefix> is
contextually declared 1if it appears in any of the following contexts. Unless
otherwise noted, the declaration is established in the <external procedure>.

1. Area: An undeclared name is contextually declared with the <area attribute)
and the <variable attribute> if it appears as the <reference> of an <in
option> or <offset attribute>l.

2. Builtin: An undeclared name is contextually declared with the <builtin
attribute> 1if it appears followed by an <argument list> and is one of the
names listed in Seetion 13. If it is not 1listed in Section 13 and it
appears with an <argument 1list> or as the <entry reference> of a <call
statement>, the program is in error.

3. Condition: An undeclared name is contextually declared with the <condition
attribute> if it appears as a <condition name> in a <signal statement>,
{revert statement>, or <on statement>.

4. File: An undeclared name is contextually declared with the <file attribute>
and the <constant attribute> if it appears as the <reference> of a <(file
option> or <copy option> of an input/output <statement>, or as the
{reference> of an input/output <condition name>.

5. Parameter: A name not declared, except as a structure member, in the
<{block> in which 1t 1is wused in a <parameter list> is declared with the
<parameter attribute> and <variable attribute>. The declaration is made in
the <block> immediately containing the <parameter list>.

6. Pointer: An undeclared name is contextually declared with the <pointer
attribute> and the <variable attribute> if it appears as the <locator

qualifier> of a <based attribute> or <locator qualified reference>, or if
it appears as the <reference> in a <set option>.

5.2.5 Contextuallvy Derived Attributes

Contextual declarations acquire <attribute>s .hich depend on the context that
produced the declaration. Any additional <attribute>s are supplied .later when
<{default statement>s are evaluated and the language default rules applied.

Explicit declarations do not acquire any <attribute)>s, other than the <parameter

attribute>, from the usage of the name in one of the above mentioned contexts.

The <attribute>s of an explicit declaration are acquired when the declaration is
established and when defaults are supplied.

An explicit declaration of a name, other than a member of a structure, is given

the <parameter attribute> if it appears in a <parameter 1list> of the <procedure>
in which it is declared.

5-9 AGYY

5.2.6 Establishment of Implicit Declarations

A name that is neither explicitly nor contextually declared is implicitly
declared in the <external procedure> with no attributes.

Each <descriptor> appearing in an Kentry attribute> or <returns attribute> is
implicitly declared 1in the <block> in which the entry declaration 1is
established.

Each <literal constant> is implicitly declared in the <block> that immediately
contains it and is given the <constant attribute). Declarations of <bit-string
constant>s are given the <bit attribute>. Declarations of {character-string
constant>s are given the <character attribute). Declarations of <arithmetic
constant>s are given the <float attribute> if they contain an e, and are given
the {fixed attribute> if they contain an f. They ~ are given the
{complex attribute> if they contain an i; otherwise, they are given the
<real attribute>. The rest of their <attribute>s are supplied by <default
statement>s and by the language default rules. Note that <default statement)>s
are not applied to <bit-string constant>s or {character-string constant>s.
Alsc, <default statements> are not applied to <arithmetic constants> containing

b.

5.3 Completion of Attribute Sets

Unless a declaration was produced by a <declare statement> that explicitly
provided all <attributeds, the declaration has an incomplete <attribute set>.
The <attribute set> of each declaration is completed by performing the following
steps in the indicated order: :

1. If the declaration contains a <{precision attribute> containing a <scale
factor>, the <fixed attribute> is given to the declaration.

2. If the declared item 1is a member of a structure and has neither the
<aligned attribute> nor the {unaligned attribute>, the <aligned attribute>
and <unaligned attribute> of its immediately containing structure are given
to the declaration. If the immediately containing structure does not have
either of these <attributed>s, the members of the structure acquire one of
the alignment <attribute>s from the application of defaults as described in
steps 4 and 5.

3. If the declared item is a member of a structure, it is given the <member
attribute> and the <internal attribute>. If it is a structure, it is given
the <structure attribute>. If the item has a {dimension attribute> or
{precision attribute)> without a keyword, the keyword is supplied.

4. Beginning in the <block> of declaration, all <default statementd>s are
evaluated in the order in which they appear in the <block>. When all
<default statement>s 1in a given <block> have been evaluated, the <default
statement>s in the immediately containing <block> are evaluated in the
order in which they appear in that <block>. This process is continued
until the <default statementd>s of the <external procedure> have been
evaluated.

5. The language defaults are supplied by evaluating the <default statementd>s
listed ir paragraph 5.3.3 as if they were written in a <block> containing
the <external procedure>.

6. Each entry declaration produced by a <label prefix> is given a set of

{parameter descriptor>s derived from the declaration of the parameters of
the entry.

T/78 5-10 AG94B

Note

If the entry declaration contained a <returns attribute>, its <returns
deseriptor> was processed by step 4 as if its <block> of declaration was
the <block> that immediately contained the {entry statement> or <procedure
statement> from which the declaration of the entry was derived. This ensures
that the <attributes> of the <returns deseriptor> are those that apply to
the inner <block>, not the <block> in which the entry declaration was made.

The declaration of each <arithmetic constant) that does not have either the
{decimal attribute> or <binary attribute> is given the <decimal attribute>,
unless it contains a b, in which'case it is given the <binary attribute>.
If it has neither the <fixed attribute> nor the <float attribute>, it is
given the <fixed attribute>.

If the declaration of an <arithmetic constant> does not have a <precision
attribute>, it acquires the <precision attribute> obtained by converting
the source precision to the base and type specified by its <attribute set>.
The source precision of an <arithmetic constant> is the number of digits in
the mantissa, including leading and trailing zeros. If the
<arithmetic constant> does not contain a <scale type> of e, it has a
<{scale factor> of j-k, ‘where j is the number of fractional digits in the
mantissa, or 0 if there are none, and k is the value of the exponent, or 0
if there is none. Refer to paragraph 8.2.10 for a discussion of the conversion
rules.

Any declaration that has the <area attribute> and does not have an <area size>
is given an <area size> of 1024, Any declaration that has the
{character attribute> or <bit attribute> and does not have a <length> is
given a <length> of 1. .

that although file description attributes can be added.to a declaration by

a <{default statement>, the file description attribute sets are not fully completed
until program execution and that they depend on how the file is opened. Refer
to paragraph 11,3 for a discussion of file opening. The file description attributes

are:

input, output, update, record, stream, sequential, direct, keyed, print,

and environment.

5.3.1

Default Statement

The <default statement> enables the programmer to determine what <attributeds
shall be supplied to declarations whose <attribute set>s are incomplete. It
allows <attribute>s to be supplied on the basis of the <attributeds already
acquired or on the basis of the spelling of the declared name.

Syntax:

7/79

<default statement>::=

[<label prefix>]...{defaultidft}
{systeminonei<

Z1

user defaults>};

<user defaults>::= (<predicate>){error!<attribute set>[,<attribute set>1...}]
<attribute set>::= <attribute>...

{predicate>::= <predicate one>!
<{predicate> <predicate one>

<{predicate one>::= <predicate two>!
<{predicate one>&<{predicate two>

{predicate twod>::= <(predicate three> | “<{predicate two>

{predicate three>::z (<predicate>)!<attribute keyword> |
{range> i

5-11 AG94C

<ranged>::= range(*)|range(<identifier>)!
range(<letter>:<letter>)

<attribute keyword>::= <identifier)
An <attribute keyword> must be the keyword or abbreviated keyword used to designate
any <attribute> except the <like attribute>. Keywords and abbreviated keywords
are equivalent,

The <like attribute> cannot be applied by a <default statementd> because <like
attribute>s are expanded before the application of <default statement>s.

5.3.2 Evaluation of Default Statements

Each <default statement> is evaluated by the compiler and behaves like a <null
Statement> when executed.

A <default statement> is evaluated by evaluating its <predicate> and if the
<{predicate> is true with respect to a given declaration, copying the <attribute
set>s specified by the {default statement> in left-to-right order into the <attribute
set> already acquired by the declaration.

Just as it is possible to write an inconsistent <attribute set> in a <declare
statement>, it is possible to produce a declaration with an inconsistent attribute
set> by the use of a <default statement>. The {predicate> of a <default statement)
should be sufficiently selective to avoid applying default <attributeds to
declarations that should not receive them. The Multies PL/I compiler copies
each <attribute set> of a <default statement)> in left-to-right order into the
{attribute set> already acquired by the declaration. If the compiler detects
inconsistencies between the <attributeds in an <attribute set> about to be copied
and these already acquired by the declaration, it does not copy the <attribute
set> into the declaration. If all <attribute setds specified by a <default
statement> are inconsistent with those already acquired by the declaration, the
compiler issues a warning diagnostic. Refer to paragraph 5.5 for a precise
definition of attribute consistency.

‘A <predicate> yields a value of "true" or "false” when applied to a declaration.
The infix operator "!" yields a value "true" only if either or both of its
operands are "true". The infix operator "&" yields a value "true" only if both
of its operands are "true". The prefix operator "*" yjelds a value "true" only
when its operand is "false".

Each <attribute keyword> or <range> operand of the <(predicate> yields a "truen"
or "false" value with respect to a given declaration. An <attribute keyword>
yields a "true™ value only if the declaration contains the <attribute> identified
by the <attribute keyword>. A <{range> operand yields a value "true" only if the
declaration is a declaration of a name whose spelling satisfies the {range>
operand.

An exception exists for options; options is not considered to yield "truem" if
"constant" was specified.

3/81 5=-12 AGYUE

A <range> operand of the form range(*) is satisfied by any name. A <range>
operand of the form range(<identifier>) is .satisfied only by names which begin
with the same sequence of characters as the <identifier> given in the <range>
operand. A <range> operand of the form range(<letter>:<letter>) is satisfied
only by names whose first letter is in the English alphabetical sequence between
and including the first and second <letter>s. The first <letter> must occur in
the alphabet before the second <letter> or both must be the same letter.

Note that declarations of <literal <constant>s, <parameter deécriptor)s or

{returns descriptor>s never satisfy a <range> operand because such declarations
are not declarations of names.

T/79 5-12.1 AG94cC

This page intentionally left blank.

7/79 AG94C

Example:
default(bit) bit(1);
default(fixed) binary(15);
declare b bit(5), f entry() returns(bit);
declare a fixed;
is equivalent to:

declare b bit(5) bit(1), f entry() returns(bit bit(1));
declare a fixed binary(15);

Note that the declaration of b is an invalid declaration.
Example:
default(range(*)&“(automatic;based:ccntrclled:defined:
parameterimember|genericibuiltinicondition!constant))
internal static;
declare a pointer;
is equivalent to:

declare a pointer internal static;

The interested reader may wish to study the language defaults as expressed by
the <default statement>s given in paragraph 5.3.3.

5.3.2.1 Special Cases of the Default Statement

A <default statement> of the form:
default system;

causes the language defaults to be applied as if the set of {default statementd>s
given in paragraph 5.3.3 were written at this point in the <procedure>.

A <default statement> of the form:

default none;

e

auses no further defaults to be supplied either from <default statement>s remaining
in the program or by the appiication of language defaults.
A <default statement> of the form:
default (<predicated>) error;
causes any declaration within the scope of the <default statement> for which the

<{predicate> is true to be considered in error. The Multics PL/I compiler issues
a diagnostic for each such declaration.

5.3.3 Language Default Rules

Entry Defaults

default (returnsireducible!irreducibleloptions) entry;
default (entry&“reducible) irreducible;

File Default

default(input:output:updateistream:record:print:keyedldirect:
sequentialienvironment) file;

7/78 5-13 AG94B

Arithmetic Defaults

default(“(character:bit}pointer!offset:area:label:formatlentry:filei

fixed:float:picture:binary{decimal:real:complex:

builtinigenericicondition!constant)) fixed binary real;
default((realicomplex)&”(picture|float!constant)) fixed;
default((binaryidecimal)&”(float!constant)) fixed;
defaulb((fixed:float)&“(complex:constant)) real;
default((fixed|float)&~(decimal!constant)) binary;
default(fixed&binary&“precision&“constant) precision(17,0)
default(rixed&decimal&‘precision&‘constant) precision(7,0)
default(float&binary&“precision&”~constant) precision(27);
default(float&decimal&”precision&“constant) precision(10);

’
»

String Default

default((character:bit)&‘(varying}constanc)) nonvarying;

Scope and Storage Class Defaults

default((entry:file)&(automatic:based:static:parametert
defined:controlled!member:aligned!unaligned:
initial) variable;

default((entryifile)&range(*)&“variable) constant;

default(‘(constant:builtin:generic:condition)&range(‘))
variable;

default((fileientry)&range(*)&constant& internal) external;

default(condition) external;

default(“external&range(*)) internal;

default(variable&external&”controlled) statie;

default(variable&“(based:controlled:static:defined:parameter:
member)) automatic;

Storage Mapping Defaults

default((character:bit:picture:structure)&‘(aligned:constant))
unaligned;

default(“(constant:builtin:generic:unaligned)) aligned;

default ((fixedifloat)&“unsigned) signed;

Example:

declare i fixed;

declare j float;

declare a;

declare X external;

declare E entry returns(fixed);

After application of the language defaults, these declarations are:

3/81

declare i fixed binary real precision(17,0)
aligned variable automatic internal signed;
declare j float binary real precision(27)
aligned variable automatic internal signed;
declare a fixed binary real precision(17,0)
aligned variable automatic internal signed;
declare X fixed binary real precision(17,0)
aligned variable static external signed;
declare E entry constant external irreducible
returns(fixed binary real precision(17,0) aligned signed);

5=18

AG94E

5.4 Syntax and Semantigs of Attributes

The <attribute>s described in this section are used in attribute sets> of
{declare statement>s, <default statement>s, <descriptord>s, and in <open
statement>s to describe variables, constants, functions and conditions. The
discussion of each <attributeé> assumes that <attribute set>s have been
completed. See paragraph 5.3 for a discussion of <attribute set) completion.
In the discussion of each <attribute>, item refers to a declaration of a name, a
{parameter descriptor>, or a <returns descriptor>.

The description of each <attribute> gives constraints that apply to the
<attribute>. Section 5.5 gives a concise syntax that shows which <attributeds
can and must appear in the same completed <attribute set>.

5.4.1 Aligned

Syntax:
{aligned attribute>::= aligned

The <aligned attribute> is used in an implementation-defined manner to influence
the representation of values in storage. In Multies PL/I, aligned data is
allocated on a word or multiple word storage boundary, and the amount of storage
is an integral number of words.

When a generation of storage is to be shared or accessed by more than one name,
all names used to access the generation must have the same alignment
{attribute>. Refer to paragraphs 4.3.1 and 4.3.3. .

5.4.2 Area

Syntax:
{area attribute)>::= area[(<area size>)]
{area size>::= <extent expression)>|#
{extent expression>::= <expression>[<refer option>]
{refer option>::=z refer(<reference) '

An item declared with the <area attribute> represents area values whose size is
given by the <area size>.

Evaluation of the <expression> of an <extent expression> must yield a secalar
value suitable for conversion to a fixed=-point, binary, real, integer. If the
{refer option> is given the value of the {expression> must also be suitable for
conversion to the data type of the variable identified by the <reference> in the
<refer option>. -

If the item has the <static attribute>, the <area size> must be an unsigned
<decimal integer>. If the item has the <parameter attribute> or is part of a
{descriptor>, the <area size> must be an unsigned <decimal integer> or an
asterisk. If the item does not have the {parameter attribute> or is not part of
a <descriptor>, the <area size> cannot be an asterisk. If the item does not
have the <based attribute>, it cannot contain a <refer option>. Refer to
paragraph 4.3.2.5 for a discussion of based storage and the <refer option>.

5-15 AG9L4

5.4.3 Automatic

Syntax:
Cautomatic attribute>::= automaticilauto

A name declared with the <automatic attribute> is a variable whose storage class
is automatic. Refer to paragraph 4.3.2 for a discussion of storage classes.

5.4.4 Based

Syntax:
<{based attribute>::= based[(<locator qualifier>)]

{locator qualifier>::= <reference>

A name declared with the <based attribute> is a variable whose storage class is
based. Evaluation of the <locator qualifier> must yield a scalar locator value.
If the <locator qualifier> is omitted, all <reference>s to the based variable
except, <allocation reference>s or the <reference>s of <refer option>s, must be
<locator qualified reference>s as defined in paragraph 6.6. All <referenceds to
based variables without locator qualification, except <allocation referenceds or
the <referenced>s of <refer options>, are implicitly qualified by the <locator
qualifier>. Refer to paragraph 4.3.2 for a discussion of storage classes, and
to paragraph 6 for a discussion of <references.

5.4.5 Bipary

Syntax:

{vinary attribute>::= binaryibin

An item or <literal constant> declared with the <binary attribute> represents a
binary arithmetic value or values.

5.4.6 Bit

Syntax:
<bit attribute>::=z bit[(<length>)]
{length>::= <extent expression>|*
{extent expression>::= <expression>[<refer option>]
{refer option>::z= refer(<reference’)

An item or <literal constant> declared with the <bit attribute> represents a
bit-string value or values.

If the item alsc has the <varying attribute>, the <length> is the maximum number
of bits that the item can represent; otherwise, it is the number of bits in each
value that the item represents. Refer to paragraph 4.1 for a discussion of data
types.

5-16 ' AG9Y

5.4.7 Builtin

. Syntax:
<builtin attributed::= builtin
A name declared with the <builtin attribute) must be one of the names listed in

Section 13. Such a name represents a function whose definition is an intrinsic
part of the PL/I language.

5.4.8 C(Character

Syntax:
<character attribute>::= {character|char}{(<length>)]
<{length>::= <extent expression)>|#
<{extent expression>::z <expression>[<refer option>]
<refer option>::= refer(<reference>)

An item or <literal constant> declared with the <character attribute) represents
a character-string value or values.

If the item also has the {varying attribute>, the <length> is the maximum number
of characters that the item can represent; otherwise, it is the number of
characters in each value that the item represents.

The <length> must satisfy the constraints giien in paragraph 5.4.2 for <area
size>.

5.4.9 Complex

Syntax:

{complex attributed::= complexicplx
Unless it also has a <picture attribute>, an item or <literal constant)> declared
with the <complex attribute> represents a complex arithmetic value or values.

If the item has a <picture attribute>, it represents character=-string value or
values as described in paragraphs 4.1 and 5.4.39.

5.4.10 Condition

Syntax:
<condition attribute>::= condition!cond

A name declared with the <condition attribute> is a <{condition name>. Refer to
Section 10 for a discussion of conditions.

5«17 AG94

5.4.11 Constant

Syntax:
<constant attribute>::= constant
A name declared with the <constant attribute> is a named constant. A <literal

constant> is always declared with the <constant attribute>. Constants cannot be
assigned values during program execution.

5.4.12 Controlled

Syntax:
{controlled attribute>::= controlledictl
A name declared with the <controlled attribute> is a variable whose storage

class 1is controlled. Refer to paragraph 4.3.2 for a discussion of storage
classes. .

5.4.13 Decimgl

Syntax:
<decimal attributed>::= decimalldec

An item or <literal constant> declared with the <decimal attribute> represents a
decimal arithmetic value or values.

Syntax:
<defined attributed>::= {definedi{def}<base reference>
<base reference>::= (<reference>)|<reference>
A name declared with the {defined attribute> is a variable whose generation of

storage is identified by the <base reference>. Refer to paragraph 4.3.3.3 for a
discussion of storage sharing through the use of defined variables.

5.4.15 Dimension

Syntax:
<dimension attribute>::= [<dim key>][(<sound>[,<bound>]...)]
<dim key>::= dimension)!dim
<bound>::= {[<extent expression>:]<extent expression>}|#*
<extent expression>::z <expression>[<refer cption)]a

<{refer option>::= refer(<reference’)

5-18 AGS9L

If the <dim key> is omitted, the <dimension attribute> must be the first
<attribute> in the <attribute set)> of a <descriptor>, <declare statement> or
{default statement>, and the parenthesized list of <bound>s cannot be omitted.

An item declared with the {dimension attribute> represents array values. If
only one <extent expression> is given, 1let L be 1 and let H be the <extent
expression>; otherwise let L be the first <extent expression)> and let H be the
second <extent expression>. The number of elements in the dimension is H-L+1,
where H must be greater than or equal to L.

If the item has the <static attribute>, each <bound> must be an optionally
signed <{decimal integer>. :

If the item has the {parameter attribute> or is part of a <deseriptor>, each
<bound> must be an optionally signed <decimal integer> or an asterisk.

If the item does not have the <{parameter attribute> or is not part of a
{descriptor>, it cannot have an asterisk <bound).

If the name does not have the <based attribute>, the <extent expression> cannot
have a <refer option>.

Evaluation of the <expression> in an <{extent expression> must yield a secalar
value suitable for conversion to a fixed-point, binary, real, integer. If a
{refer-option> is given, the value of the {expression> must also be suitable for
conversion to the data type of the variable identified by the <reference> in the
{refer option>.

If a completed <attribute set)> contains a <dimension attribute>, it must contain
exactly one <dimension attribute> with a parenthesized list of <bound>s.

5.4.16 Direct

Syntax:

<{direct attributed::=z direct
A file constant declared with the <{direct attribute> causes the file-state block
that it identifies to be opened with the <direet attribute). A file-state
block with the <direct attribute) Selects the records of its associated data set

by means of character-string valued keys. Refer to Section 11 for a discussion
of input/output.

5.4.17 Entry

Syntax:
<entry attribute>::= entry(([<parameter descriptor list>])]

<{parameter deseriptor listd>::= {parameter descriptor>
{,<parameter descriptor>]...

<{parameter desecriptor>::= <{descriptor>

<descriptor>::= <level>[<attribute set>]!
[<level>]<attribute set)>

attribute set)::= attribute>...

An item declared with the <entry attribute) represents entry values.

5-19 : AG94

If the <parameter descriptor list> is omitted, an entry value represented by the

.item is invoked only when it is identified by the entry reference> of a <ecall
statement> or when it is identified by the <entry reference> of a <function
reference> with a null <argument list>.

An <entry attribute> of the form "entry()" is equivalent to an <entry attribute>
of the form "entry", except that the former is a complete <attribute> and the
latter is an incomplete <attribute>. The significance of this difference is
shown in paragraph 5.2.1.2 and paragraph 5.3.2.

A <parameter descriptor 1list> does not restriect the values that may be
represented by the item. A <parameter descriptor list> is significant only when
an entry value represented by the item is invoked.

The <parameter descriptor list> must produce a declaration for each {parameter
descriptor> that is equivalent to the actual declaration of each parameter in
the entry invoked by each invocation of the entry values represented by this
item. Such declarations are equivalent only if they contain exactly the same
{attribute setd>s, except that the <parameter descriptor> cannot have: the
{parameter attribute> or <internal attribute).

An <attribute set> of a <descriptor> must be consistent. An <attribute set> of
a <descriptor> 1is consistent only if it can be transformed into a <{descriptor
set> as described in paragraph 5.5.

A <descriptor> of a structure has exactly the same syntax as a <defactored
declaration> of a structure variable, except that it has no name. Its members
are declared exactly like the members of a structure variable, except that they
have no names.

Example:

declare F entry(1,2 fixed,2 pointer,1,
2 bit(1),2 bit(4),(10,10) pointer);

The entry F has three parameters. The first is a structure containing an
integer and a pointer. The second is a structure containing two bit-strings,
and the third is a ten-by-ten array of pointers.

5.4.18 Environment

Syntax:
<environment attribute>::= {environmentienv}[(interactive)|(stringvalue)]

A file constant declared with an <environment attribute) causes the file-state
block that it identifies to be opened with the <environment attribute).

If a completed <attribute set> contains an <environment attribute>, it must
contain exactly one <environment attribute> with a parenthesized keyword which
may be "interactive" or "stringvalue."

A file-state block with an <environment attribute> specifying "interactive”
causes the execution of each <put statement> that references the file to finish
its output by writing a linemark. This form of <envircnment attribute> is
normally used when the data stream attached to the file-state block is an
interactive device used for both input and output.

5-20 AG94

-

If a file-state block has an <environment attribute> specifying "stringvalue,"
the execution of a <read statement>, <rewrite statement>, or <write statement>
is affected as follows. If a <read statement) has an <into option> referencing
a scalar variable with the <character attribute> and the <varying attribute>,
the complete record in the file is treated as a character-string value and is
assigned to the variable by a normal string assignment. If a <rewrite
statement> or <write statement> has a <from option> referencing a scalar
variable with the <character attribute> and the {varying attribute)>, the record
placed in the file will be a character string that is equal to the current value
of the variable. If a <read statement> has an {into option> referencing a
scalar variable with the <bit attribute> and the <varying attribute>, the
complete record in the fils is treated as a bit-string-value and is assigned to
the variable by a normal string assignment. If a <rewrite statement) or <write
statement> has a <form option> referencing a scalar variable with the <bit
attribute> and the <varying attribute>, the record placed in the file will be a
bit string that is equal to the current value of the variable. This form of the
{environment> attribute is useful for processing a file containing strings of
different lengths, especially when the file was not created using PL/I record
output.

5.4.19 External

Syntax:

<{external attribute>::= external!ext
A name declared with the <external attribute) has external scope and is known in
all <block>s in which the same name is declared with the <external attribute>
and in all contained <block>s, except those <bloeck>s in which the name is
redeclared with the <internal attribute)>. All declarations of an external name

must have equivalent <attribute set>s, and all such declarations refer to the
same generation of storage, the same constant, or the same condition.

5.4.20 File

Syntax:
{file attributel>::= file

An item declared with the.<file attribute) represents file values.

5.4.21 Fixed

Syntax:
{fixed attributed>::= fixed

An item or <literal constant> declared with tre {fixed attribute> represents a
fixed-point arithmetic value or values.

5=-21 AG9Y

5.4.22 Float

Syntax:
<float attribute>::= float

An item or <literal constant> declared with the <float attribute) represents a
floating-point arithmetic value or values.

5.4.23 Format

Syntax:
{format attribute)::= format

An item declared with the <format attribute)> represents format values.

5.4.24 Generic

Syntax:
{generic attribute>::= generic[(<alternative list>)]
<alternative list>::= <alternative>{,<alternative>]...
{alternatived>::= <entry reference>when([<selector>])
{entry reference>::= <{reference>
<selector>::= <arg selector>[,<arg selector>]...

{arg selector>:ﬁ= % [<level>]<attribute setd!
<level>[<attribute set>]

attribute set>::= <attribute>...

A name declared with a <generic attribute> is the name of a set of entry
variables and entry constants. Refer to paragraph 6.9 for a discussion of
{reference>s to generic names.

If a completed <attribute set> contains a <generic attribute>, it must contain
exactly one <generic attribute> with an <alternative list)>.

The <attribute>s used in an <arg selector> are restricted to the <attributeds
allowed in a <parameter descriptor> as described in paragraph 5.4.17, except
that these two additional rules apply:

All <extent expression>s must be asterisks.

The <precision attribute> has an extended syntax that permits a range of
precision values to be specified.

{precision attribute>::=z [precision|prec]
(<low prec>[:<high prec>][,<low scale>
[:<high scale>]])

Both <low prec> and <high prec)> must be <decimal integer>s and the value of
<low prec> must be less than the value of <high prec>: Both <low scale>
and <high scale> are optionally signed <decimal integer>s and the value of
<low scale> must be less than the value of <high scale>. Note that this

. extended form of the <precision attribute> is only permitted in an <arg
selector> of a <generic attribute).

5=-22 AG9Y

5.4.25 Initial

Syntax:
<initial attribute>::= {initial!init}(<initial list>]
<initial list>::= (<initial item>[,<initial item>]...)

{initial item>::=z <factor><initial list>!
[<factor>]<initial value>|(<expression>)

<initial value>::= [+|-]|"1<literal constant>!
{+j-i<reail constant>{+|~-}<imaginary constant)!
[+1=1"1<reference>!*

{factor>::= (<expression>)

If a completed <attribute set> contains an <initial attribute>, it must contain
exactly one <initial attribute> with an <initial list>.

If the declaration also has the <static attribute>, the <factor> must be a
{decimal 1integer>, the <initial item> must not be (<expression>), and the
<initial value> must be <literal constant>s or {reference>s toc the null and
empty built-in functions.

Evaluation of the <factor> must yield a scalar arithmetic or string value. The
value of the <factor> is converted to a real, fixed-point, binary integer whose
value must be greater than zero. Evaluation of each <expression> or <reference>
in the <initial value)> or <initial item> must yield scalar values.

An <initial attribute> provides an ordered sequence of scalar values that are
assigned to the scalar components of each generation of the variable when the
generation is allocated. Note that the elements of an array are stored in
row-major order and that the scalar values of the <initial attribute> are
assigned to the elements in row-major order. Refer to Section 4 for a
discussion of array storage and allocation.

The program is in error if the number of elements in the array is not equal to
the number of scalar values given in the <initial attribute>. It is alsc in
error if a scalar variable 1is declared with an <initial attribute> that
specifies more than one value.

An asterisk <initial value> causes the scalar variable to which it applies to
not be initialized.

During compilation of an <external procedure>, the 1lexical level syntax rules
are applied before any high level syntax rules are applied. Consequently, a
{character string constant> or a <bit string constant> beginning with a
parenthesized <decimal integer> is expanded into a single constant as described
in paragraph 2.6.

Example:

declare x(5) bit(5) initial((5)"1"b);

declore x(5) bit(5) initial("11111"b);

To set all 5 elements of the array to all ones we must write:
declare x(5) bit(5) initial((5)(5)"1"b);

or:

declare x(5) bit(5) initial((5)(1)"11111"b);

T/78 5-23 AGo4B

5.4.26 Input

Syntax:
<input attribute>::= input

A file constant declared with the <input attribute> causes the file state block
that it identifies to be opened with the <input attribute>.

It is an error to execute a <write statement)>, <locate statement>, <rewrite
statement>, <delete statementd>, or <put statement> whose {file option>
identifies a file-state block that has an <input attribute)>. Refer to Section
11 for a discussion of input/output.

5.4.27 Interpal

Syntax:
<internal attribute>::= internallint

A name declared with the <internal attribute> has internal scope and 1is known
only in the <block> in which it is declared and all contained <block>s, except
those <block>s in which it is redeclared.

5.4.28 Irreducible

Syntax:

<irreducible attribute>::= irreducible}irred

An item declared with the <irreducible attribute> represents entry values. When
an entry value represented by a name declared with an <irreducible attribute) is
inveked, it is assumed to designate an’ irreducible entry as described in

paragraph 6.11.

An <irreducible attribute> does not restrict the entry values represented by the
item; its only significance is to force the entry values represented by the item
to be invoked once for each evaluation of an <entry reference> in a <ecall
statement> or <function reference>.

5.4.29 Keved

Syntax:
<keyed attributed>::= keyed

& file constant declared with the <keyed attribute> causes the file-state block
that it identifies to be opened with the <keyed attribute>. A file-state block
with the <keyed attribute> may select the records of its associated data set by
means of character-string valued keys. Refer to Section 11 for a discussion of
input/output.

5-24 AG94

5.4.30 Label

Syntax:
<label attributed>::= label

An item declared with the <label attribute> represents label values.

5.45.31 Like

Syntax:
<like attribute>::= like<like reference>
<like reference>::= <identifier>[.<identifier>]...
The <like attribute)> is a macro-attribute and is fully described in paragraph

5.2.2. The <like attribute> cannot appear in a <default statement>, in a
Cdescriptor>, or in a <generic attribute>.

5.4.32 Loeal

Syntax:
<local attribute>::= local

An item declared with the <local attribute> represents either label values or
format values.

When a name declared with the <local attributed is referenced during evaluation
of a <goto statement)>, its value must be a label value derived from a {label
prefix> immediately contained in the same <block> that immediately contains the
declaration of the name.

When a name declared with the <local attribute> is referenced during evaluation
of a <remote format>, its value must be a format value derived from a <label
prefix> immediately contained in the same <block> that immediately contains the
declaration of the name.

A <local attribute> does not restrict the values represented by the item, except
when the item is referenced by a <{goto statement> or {remote format>.

5.4.33 Member

Syntax:
<member attributed::= member

An item declared with the <member attribute> must be a member of a structure as
described in paragraph 5.2.3.1.3.

5-25 AG93

5.4.34 Nonvarying

Syntax:
<nonvarying attributed>::= nbnvarying:nonvar

An item declared with the <nonvarying attribute> represents string values that
all have the same length. The length 1is given by the <length> specified in the
<bit attribute> or <character attribute)>.

5.4.35 0Qffset

Syntax:
<offset attribute)>::= offset[(<reference>)]

An item declared with the <offset attribute> represents offset values.
Evaluation of the <reference> must yield a scalar area.

5.4.36 Options

Syntax:

<options attributel>::=
options{(constant) ! (<option specification>[,<option specification>]...)}

option specification>::= {variable:non_quick:support:main:separate_static
ipacked_decimal}

The <options attribute> is used to provide nonstandard information about
variables and entry values. Unless the keyword "constant" is specified, an item
declared with an <options attribute> represents entry values. '

When an entry value represented by a name declared with the <options attribute>
with the keyword "variable" is invoked, it is assumed to designate a nonstandard
Multiecs entry that requires full run-time argument descriptions. An entry is
nonstandard if it accepts a variable number of arguments or allows a given
argument to have different attribute>s each time the entry 1is invoked.
Standard PL/I {procedure>s described by this document never need this
<attribute>. The Multics Programmers' Manual identifies all Multics entries
that must be declared with the <options attribute> specifying "variable."

An <options attribute> specifying "variable" does not restrict the entry values
represented by the item; its only significance is to force all invocations of
the entry values represented by the 1item to have complete run-time argument
descriptions as required by nonstandard Multics entries.

If a <procedure statement> or <entry statement> contains an <options attribute>
specifying "variable", that <statement> identifies a nonstandard Multics entry
requiring complete run-time argument descrirtions.

If the <procedure statement> heading an <external procedure> contains an
options attribute> specifying "support", that {external procedure> is
considered to be a Multics runtime support <{procedure>, This <option
specification> should only be used by systems programmers; its use affects error
messages printed by Multics. The keyword "support" may only be used with an
{options attribute> that is contained in the <procedure statement> heading an
<external procedure>.

7/79 5-26 AG94C

The <options attribute> may specify the keyword "non_quick" if it is contained
within a <begin statement> or within a <procedure statement> that does not head
an <external procedure). This <option specification> forces the compiler to
obtain a new stack frame for the program when the <block> headed by the
aforementioned <procedure statement> or <begin statement)> is activated. If this
<option specification> is not used, the compiler may attempt to have this
<block>'s activation record share the stack frame of another <block>.

If the <procedure statement> heading an <external procedure> contains an
<options attribute> specifying "main", and the program is running within a run
unit, that <external procedure> is considered the main <{procedure> of the run
unit. Since this only affects the semantics of the <return statement)> and <end
Statement>, this <option specification> should be used only to identify the
first non-system <procedure> of the run unit when it is important to affect the
semantics of the aforementioned {statement>s. The keyword "main" may be used
only with an <options attribute> that 1is contained in the {procedure statement)
heading an <external procedure>.

If the <procedure statement) heading an <external procedure> contains an
<options attribute> specifying "separate_static", the compiler produces an
object segment with a statie section separate from the linkage section. Since
this degrades the efficiency of the object code, this option specification)
should be used only with prelinked subsystems. The keyword "separate_static"
may be used only with an {options attribute> that is contained in the <procedure
Statement> heading an <external procedure>,

If the <procedure statement> heading an <external procedure> contains an
{options attribute> specifying T"packed decimal", the compiler prints no warning
message for using unaligned decimal (packed decimal) variables. Otherwise 3
warning message is printed if unaligned decimal variables are used. Release 25
of the compiler allocates unaligned decimal variables by packing 2 digits per
byte. Previous releases of the compiler allocated unaligned decimal at only 1
digit per byte. Specifying "packed_decimal" in the <options attributed
identifies <external procedureds designed to be compiled with Release 25 or
later release of the compiler. In a future release, the need to specify
"packed decimal" in anp {options attribute> on a {procedure statement> to
suppress this warning ' will be eliminated.

7/79 5-26.1 AG94cC

This page intentionally left blank.

T7/79 AG94C

The <options attribute> may specify the parenthesized keyword "constant" for
items that are not entry values. Specification of "constant" causes the
variable to be allocated in the text section of the object segment. The
completed <attribute set> of a variable for which "options(constant)™ has been
specified must contain the <internal attribute>, the <static attribute>, and
either the <initial attribute> or the <structure attribute>. If the latter is
true, all nonstructure members of the structure must contain the <initial
attribute>. Except for its allocation, the variable iS treated semantically as
any other internal static variable. It is an error to change the value of a
variable for which "options(constant)" has been specified during execution of a
program.

If the <options attribute> 1is contained within a {procedure statement> or
<begin statement>, one or more <option specification>s must be specified.

If a completed <attribute set) contains an <options attribute>, it must contain

exactly one <options attribute> with either the parenthesized keyword
"constant", or with a parenthesized list of one or more <option specification>s.

5.4.37 Output

Syntax:

{output attribute>::z output
A file constant declared with the <output attribute> causes the file-state block
that it identifies to be opened with the <output attribute>. It is an error to
execute a <(read statement>, <get statement>, <rewrite statement>, or <{delete

Statement> whose <file option> identifies a file-state block that has an {output
attribute>. Refer to Section 11 for a discussion of input/output.

5.4.38 Parameter

Syntax:
{parameter attribute>::= parameter|parm

A name declared with the <{parameter attribute> must appear as a parameter in a
{parameter list> of the <procedure> in which it is declared.

5.4.39 Picture

Syntax:

<picture attribute>::= {pictureipic}{"<picture>"]
An item declared with the <picture attribute> represents character-string values
whose conversion to arithmetic values or other character-string values is
controlled by the <picture>. Refer to paragraph 8.2.12 for a discussion of
picture controlled conversion and the syntax of <{picture>s,

If a completed <attribute set> contains a {picture attribute>, it must contain
exactly one <picture attribute> with a <picture>.

11/77 5-27 AG94A

5.4.40 Pointer

Syntax:
{pointer attributed::= pointer|ptr

An item declared with the <pointer attribute> represents pointer values.

5.4.41 Position

Syntax:
<position attribute>::= {positionipos}[(<pesition>)]
{position>::= <expression>

A name declared with the <position attribute> must be a defined variable
suitable for string overlay defining as described in paragraph 4.3.3.6.

If a completed <attribute set> contains a <position attribute>, it must cdntain
exactly one <position attribute> with a <position>.

5.4.42 Precision

Syntax:
{precision attribute>::= [<precision key>][(<precision>
[,<scale factor>])]

{precision key>::= precisioniprec
{precision>::= <decimal integer>
{scale facétor>::z [+|=-]<decimal integer>

An item declared with the <precision attribute)> represents arithmetic values.

If the <precision key> is omitted, the <precision attribute> must immediately
follow either the <fixed attribute>, <float attribute>, <binary attribute>,
{decimal attribute>, <real attribute>, or the <complex attribute>. . If the
{precision key> is omitted, the remaining part of the <attribute> must be given.
If the <scale factor> is present, the item must have the <fixed attribute> and
not the <float attribute>.

The <precision> specifies the number of digits that is sufficient to express all
values represented by this item. The <scale factor> defines the position of the
decimal or binary point. The point is located k digits to the 1left of the
rightmost digit when the <scale factor> is positive, and -k digits to the right
of the rightmost digit when the <scale factor> is negative, where k is the value
of the <scale factor> and must be in the range -128<k<127. The <precision> is
restricted to a nonzero value < 59 if the item has the <decimal attribute>, to a
nonzero value < 71 if the” item has the <binary attribute> and the <fixed
attribute>, and to a nonzero value < 63 if the the item has the <binary
attribute> and the <float attribute>.

When the <precision attribute> is used in a <generic attribute>, it has an
extended syntax as shown in paragraph 5.4.24.

If a completed <attribute set> contains a <precision attribute>, it must contain
exactly one <precision attribute> with a <precision>.

5-28 AG94

5.4.43 Print

Syntax:

<{print attribute>::= print
A file constant declared with the <print attribute> causes the file-state block"
that it identifies to be opened with the <print attributed>. A file-state block

with the <print attribute> writes data into its data stream as if it were a
printer. Refer to Section 11 for a discussion of input/output.

5.4.44 Real

Syntax:

<real attribute>::= real
Unless it also has a <picture attribute>, an item or <literal constant) declared
with the <real attribute)> represents a real arithmetic value or values. If the

item has a <picture attribute>, it represents character-string values as
described in paragraphs 4.1.6 and 5.4.41.

5.4.45 Record

Syntax:
{record attributed::= record

A file constant declared with the <record attribute> causes the file-state block
that it identifies to be opened with the <record attribute>. A file-state block
Wwith the <record attribute> can only be attached to a record data set ‘and cannot
be attached to a stream data set. Refer to Seetion 11 for a discussion of
input/output. :

5.4.46 Reducible

Syntax: ,
<{reducible attributed::= reducible!red

An item declared with the <reducible attribute) represents entry values. When
an entry value represented by a name declared with a <reducible attribute> is
invoked, it is assumed to designate a reducible function as described in
paragraph 6.11,

A <reducible attribute> does not restrict the entry values represented by the

item, its only significance is to possibly reduce the number of invoeations of
the entry values represented by the item.

5-29 AG9Y

5.4.47 Returns

Syntax:
<returns attribute>::= returns{([<returns descriptor>])]
<returns descriptor>::=z <descriptor>[,<descriptor>]...

<descriptor>::= <level>[<attribute set>]|
[<level>]<attribute set>

<attribute set>::= <attribute>...

An item declared with a <returns attribute> represents entry values. An.entry
value represented by a name declared with a <returns attribute> cannot bDe
invoked by the execution of a <call statement>.

A <returns attribute> does not restrict the entry values represented by the
item, its only significance is to limit the invocation of such entry values to
the evaluation of <function reference>s.

The <extent expression>s that appear in a <returns descriptor> must be <decimal
integer>s or asterisks. If given as <decimal integer>s, the extents of all
values returned by the function are the same. If given by asterisks, each
invocation of the. function can return a value whose extents may differ from the
previous invocation.

The <varying attribute>, <nonvarying attribute>, <aligned attribute>, and
<unaligned attribute> can appear in a <returns descriptor>. The wuse of these
<attribute>s in a <returns descriptor> provides optimization information to the
compiler but has no effect on the semantics of the language.

The <returns descriptor> must produce a declaration that is identical to the
declaration produced by the <returns descriptor> of the <returns attribute>
written on the <procedure statement> or <entry statement> invoked by each
invocation of the entry values represented by the item.

An <attribute set> of a <{dascriptor> must be consistent. An dattribute set> is
consistent only if it can be transformed into a <descriptor set> as described in

paragraph 5.5.

If a completed <attribute set> contains a <returns attribute>, it must contain
exactly one <returns attribute> with a <returns descriptor>.

5.4.48 Sequential

Syntax:
<sequential attribute>::= sequentialjseql

A file constant declared with the <sequential attribute> causes the file-state
block that it identifies to be opened with the <sequential attribute>. A
file-state bloeck with the <sequential attribute> selects the records of its
associated data set in the order in which the records are recorded, unless the
file-state block also has the <keyed attribute> in which case the input/output
<{statement> may supply a character-string valued key that is used to select a
record from the data set. Refer to Section 11 for a discussion of input/output.

5=-30 AGY94

5.4.48a Signed

Syntax:

{signed attribute>::=z signed
The <signed attribute> is a nonstandard <attribute> and its use makes programs
dependent on Multies PL/I. The {signed attribute> influences the representation
of values in storage. A signed arithmetic variable always contains storage to
represent the sign of its value.
If a generation of storage is to be shared or accessed Dby more than one name,

and one of those names is declared with the {signed attribute>, then ncne of the
other names may be declared with the {unsigned attribute>.

5.4.49 Static

Syntax:
{static attributed>::= static

A name declared with the <static attribute> is a variable whose storage class is
static. Refer to paragraph 4.3.2 for a discussion of storage classes.

5.4.50 Stream

Syntax:

{stream attributed>::= stream
A file constant declared with the <stream attribute> causes the file-state block
that it identifies to be opened with the <stream attribute>. A& file-state block
opened with the <stream attribute> can be attached only to a stream data set and

cannot be attached to a record data set. Refer to Section 11 for a discussion
of input/output.

5.4.51 Structure

Syntax:
{structure attribute>::= structure

An item declared with the <structure attribute> must be a structure as described
in paragraph 5.2.3.1.3.

T/78 5-30.1 AGS94B

This page intentionally left blank.

T7/78 AG94B

5.4.52 Unaligned

Syntax:
<unaligned attribute>::= unaligned}unal

The <unaligned attribute> is used in an implementation-defined manner to
influence the representation of values in storage. In Multies PL/I, unaligned
nonvarying bit-string values, unaligned binary arithmetic values, or unaligned
pointer values are aligned on bit boundaries. Unaligned nonvarying
character-string or decimal arithmetic wvalues are aligned on 9-bit byte
boundaries.

When a generation of storage is toc be shared or accessed by more than one name,

all names used to access the generation must have the same alignment
{attribute>. Refer to paragraphs 4.3.1 and 4.3.3.

5.4.52a Unsigned

Syntax:
{unsigned attribute>::= unsigned!)uns

The <unsigned attribute> is a nonstandard <attribute> and its use makes programs

dependent on Multies PL/T. The <unsigned attribute> influences the
representation of values in storage. A packed unsigned arithmetic variable does
not contain storage to represent the sign of its value. An unsigned variable

may store only nonnegative values.
If a generation of storage is to be shared or accessed by more than one name,

and cne of those names is declared with the {unsigned attribute>, then all of
the other names must be declared with the <unsigned attribute>.

7/78 5-31 AG94B

5.4.53 \Update

Syntax:
<update attribute>::= update

A file constant declared with the <update attribute> causes the file-state block
that it identifies to be opened with the <update attributed>. It is an error to
execute a <{get statement> or <{put statement> whose <file option> identifies a
file-state block that has an <update attribute>. Refer to Section 11 for a
discussion of input/output.

5.4.54% Varjable

Syntax: .
{variable attributed>::= variable

A name declared with the <variable attribute> is a variable.

5.4.55 Varying

Syntax:
<varying attribute>::= varyingi!var

An item declared with the <varying attribute> represents string values whose
lengths may be any value, k, such that 0<k<a, where n is the {length> specified
in the <bit attribute> or <character attribute>.

5.5 Attribute Consistency

To check the consistency of a completed <attribute set> consider the <attribute
set> to be an ordered set of keywords formed by removing all parenthesized and
auxiliary parts of each <attribute>. Replace any abbreviated keyword by its
full keywerd and replace all multiple occurrences of a given keyword by a single
dccurrence of the keyword. Let the order of the keywords be the order implied
by these syntax rules. For this discussion, consider the options keyword to
apply to the <options attribute> with one or more <entry value options>
specified.

If the resulting ordered set of keywords is not described by these syntax rules,
it is an inconsistent set and the program is in error. If it is deseribed by
these syntax rules and the constraints are satisfied, it is a consistent set.

Because file description attributes may be supplied during file opening as
described in paragraph 11.3, an <attribute set> containing one or more file
description attributes is considered a consistent set even though its file
description attributes are only a subset of those described by <consistent fiie
description>. If the file description attributes of an <attribute set> are not
a subset of those described by <consistent file description>, the <attribute
set> is an inconsistent set.

The validity of <expression>s, <referenceds, or <decimal integer>s that are part
of an <attribute> are not considered when determining the consistency of an
<attribute set>. Constraints of that type are described in paragraph 5.4 where
the semantics of each <attribute> are given.

5-32 AGOY4

Each <literal constant set> must be produced by the declaration of a <literal
constant> and each <descriptor set> must be produced by the declaration derived
from a <descriptor>. A <named constant set>, other than an external entry
constant or file constant, must be produced by a declaration derived from a
<label prefix>.

Syntax:
{consistent attribute set>::= <condition set>!<builtin set>|
{generic set>| <llteral constant set>|
<named constant set>{<descriptor set>]
{variable set>
{condition set>::= external condition

<builtin set>::= internal builtin

{generic set>::= internal generic

<literal constant set>::= {<arithmetic>!bit!character}
constant ‘
<{named constant set>::= internal label constant({dimension]!

internal format constant)<scope><entry>constant!
<scope>file<consistent file description>constant

<descriptor set>::= <data type><alignment>[dimension][member] [<sign type>]

{variable set>::=z variable<data type><alignment>[dimension]
{scope class>[initial] [<sign type>]

{data type>::= <arithmetie>{<string>| <entry>.structure£llke]|
polnter.offset.area.label[local] format{locallifile

<arithmetic>::= {fixed|float}{binaryi/decimal}{real}complex}
precision

{string>::= picturel(real!complex]!
{blt.character}[varylng.nonvarylng}

<entry>::= entryloptions]
{reducible returns!irreduciblelreturns]}

{alignment>::= alignedunaligned

{scope>::= internal}external

{scope class>::= automatic internal{based internal!
static<scoped|controlled<scoped>|parameter internal!
defined internal{position]|member internal

{consistent file description>::z <stream description>!
{record description>

<{stream description>::= stream{inputioutputlprint]
(environment]}

{record description>::= record{lnput.output.update}
{<sequential description>|<direct description>}{environment]

<{sequential description>::= sequentiallkeyed]
<direct description>::z= direct keyed

<sign type>::= signedjunsigned -

T/78 5-33 ’ AG94B

Constraints:

An <attribute set> of a member of a parameter structure or defined structure
cannot have an <initial attribute>.

An attribute set> containing the {parameter attribute> or the
{defined attribute> may not contain an <initial attribute>.

An <initial attribute> cannot be given in the <attribute set> of a structure.

An <attribute set> containing the <signed attribute> must contain either the
{fixed attribute> or the <float attribute>. ‘

An <attribute set>- containing the <unsigned attribute> must contain the <fixed
attribute>, the <binary attribute>, and the <real attribute>.

Note: The <options attribute> is consistent with entry unless "constant"
is specified, in which case it is consistent with static internal.

T7/78 5-34 AGIOUB

SECTION 6

REFERENCES

The value and storage of a variable, the value of a named constant, the value
returned by a funetion, or the condition identified by a condition name is
represented in the text of an <external procedure> by a <reference> to a
declared name. A declaration establishes the meaning of a name within a given
region of the program known as the gcope of the declaration. Refer to Section 5
for a discussion of declarations and scope.

A <reference> is resolved by finding the declaration to which it refers. A
{reference> 1is evaluated by locating the generation of storage or value
represented by the declared name. A <reference> is resolved by the compiler and
is evaluated during program execution.

Syntax:
{reference>::= <simple reference)!
{subscripted reference)!
{structure qualified reference)|
<loeator qualified reference)!
{function reference>
The meaning of a <reference) depends on the syntax of the <reference>, the
attribute>s of the declared name and the context in which the <reference>
occurs.
Evaluation of a <reference> that identifies a variable either: yields a
generation of storage of the variable, yields the current value stored in a
generation of storage of the variable, or yields an identification of the
variable’s declaration. A <reference) yields a value unless it occurs in one of
the following contexts:
In the following contexts, a <reference> yields a generation of storage:
1. A <target> of an <assignment statement>.
2. An <index> of a <multiple do>.

3. An argument, passed by-reference, by a <call statementd> or <function
reference>.

4. An argument to the "addr" built-in function, unless it identifies an
unallocated controlled variable.

5. A <reference> in a <string option> of a <put statement>.
6. A <free reference> of a <free statement>.
7. A <reference> in a <{pseudo-variable>, other than a <{pageno pseudo>.

8. A <reference> in a <set option>, <in option)>, <into option>, <from option>
or <keyto option>.

9. A <target> of a <get item> in a <get statement> or a <get data ref> in a
{get statement>.

6-1 AG9Y

10. A <reference> in a <refer option> evaluated as the target of the assignment
of its evaluated extent.

In the following contexts, a <reference) is only an identification of its
declaration and yields neither a value nor a generation of storage:

1. An <allocation reference> in a <allocate statement> or <locate statement>.

2. An argument of the "size" or "allocation® built-in function, or the first
argument of the "convert" built-in function.

3. A <reference> to an unallocated controlléd variable used as an argument to
the "addr"™ built-in function.

Except in these contexts, it is an error to reference a variable whose
generation of storage has not been allocated. It is always an error to
reference the value of a variable if no value has been assigned to the variable.
Refer to paragraph 4.3.2 for a discussion of storage allocation.

The order of evaluation of the components of a <referenced is undefined and any
program that depends on the order is in error.

A <reference>, R, contained in a declaration of ¥ is resolved in the <block>
that immediately contains the declaration of X, and is evaluated when X is
referenced or allocated. R is evaluated as if it were referenced in the <block>
that immediately contains the <reference> to X or caused the allocation of X.

A <reference>, R, to a defined variable, X, whose <base reference)> contains
isubs or asterisks is mapped as described in paragraph 4.3.3.4 or 4.3.3.5 during
evaluation of R. Any <reference)>s in the {subscript>s of R are resolved in the
<block> that immediately contains R, but all <referenceds in the <base

reference> are resolved in the <bloek> that immediately contains X. R is
evaluated in its immediately containing <block)>.

6.1 Simple Referenges

Syntax:

{simple referenced>::=z= <identifier>

6.2 Subscripted References

Syntax:

{subscripted reference>::= {identifier>(<subscript>
[,<subseript>]...)

{subseript>::z <expression>|*

Each <expression> must be a scalar value suitable for conversion to a
fixed-point, binary, real, integer as described in Section 8. The number of
{subscript>s must be equal to the number of dimensions declared for the name.
Refer to paragraph 4.2 for a discussion of array data, and to paragraph 5.4.15
for a description of the <dimension attribute).

6-2 AGYL

6.3 Cross-Section References

A <{subscripted reference)> containing one or more asterisk <subscript>s is a
gross-section <reference). It is a <reference> to the array formed by the
planes, indicated by asterisks, of the array identified by the reference. The
number of dimensions of the array is the number of asterisks in the reference.

A cross-section <reference> containing only asterisk {subscript>s is equivalent
to a <reference> to the entire array.

Cross-section <reference>s, other than those equivalent to a <reference)> to the
entire array, are usually <reference>s to unconnected arrays. As such they
cannot be wused as the argument to the "addr" built-in function and cannot be
passed as arguments to array parameters, unless the parameters are declared with
asterisk bounds. Otherwise, a cross-section <reference)> can be used any place
in a program that an array <reference> is permitted. Refer to paragraph 4.3.1.3
for a discussion of unconnected arrays.

Multies PL/I requires that parameters that receive unconnected arguments be
declared with asterisk bounds. Henceforth in this document, the word T"array"
should be taken to includq array values of cross-section <referenceds.

Example:
declare A(7,5), B(5,10), C(5);
A(I,*) = B(*,3)+C(%*);

This <statement> computes a one-dimensional array of five values by adding the
values of the 3rd column of B to the values of C and then assigns them to the
Ith row of A. Note that a <reference> to C(*) is equivalent to a <reference> to
C.

6.4 Structure Qualified References

The name of a member of a structure can have a scope which overlaps another
declaration of the same name. To resolve ambiguity of <referenced>s to such
names, the <reference> must be qualified by {containing reference>s to one or
more of its containing structures. Refer to paragraph 4.2 for a discussion of
structure data and to paragraph 5.2.3.1.3 for a description of structure
declarations. .

Syntax:

<structure qualified reference>::=
{<containing reference>_}...<member reference>

{containing referenced::z <simple reference)!
{subsecripted reference>

{member reference>::z <{simple reference)i
{subscripted reference>

Examples:

A.B.C
X(I).Y.2(5,K)
NODE.ELEMENT

The rightmost <reference> identifies the variable being referenced. It is
contained within the .structure identified by the immediately preceding
<{containing reference>, which in turn is contained within the structure
identified by the immediately preceding <containing reference), etec.

6-3 AG94

The rightmost <reference> is said to be fully gqualified if it is qualified by a
{containing reference> to each of its containing structures. A name declared at
level n in a substructure has n-1 {containing referenced>s if it is fully
qualified. A <simple reference) or simple <subscripted reference> to a name
declared by a level-one declaration is considered a fully qualified <reference>
to that name. A fully qualified <reference> is never ambiguous.

The rightmost <reference> is said to be partially gqualified if it has fewer
{containing reference>s than it has containing structures. .

The <subscript>s used in a <structure qualified reference> do not have to appear
immediately following the names to which they are to apply. As long as the
order of the <subscript>s is preserved, the {subscript>s may be moved to the
left or the right and written after any of the names in the {reference>. Use of
this feature obscures the meaning of a program and should be avoided.

The number of <subscript>s must equal the number of dimensions of the referenced
name including all inherited dimensions.

Example:
declare 1 S(3),
2 A(Y),
2 B;

A <subscripted reference> to A must contain two <{subscripts>, and <subscripted
reference>s to S or B must have one {subsecript>.

Asterisk <subscript>s may be used to refer to cross-sections of arrays of
structures or array structure members.

Example:

declare 1
2
2

declare

X,
2 1(5);
The following are all valid cross-section <referenceds:

S(K).A(*) S(®).A(®*) S(*).B S(*) X.Y(¥%)

6.5 BReference Resolution and Ambiguity

A declaration 1is applicable to a <structure qualified reference> if it is a
declaration of a structure member some or all of whose containing structures
have the same names and the same order as the <containing referenced>s of the
{structure qualified reference>. A declaration 1is applicable to a <simple
reference> or <subscripted reference> if it is a declaration of the name given
in the <simple reference> or <subscripted reference>.

Refeiences are regolved by looking for an applicable declaration in the <block>
that immediately contains the <reference>. If no applicable declaration exists
in that <bloeck>, the next containing <block> is searched until a <block>
containing an applicable declaration is found. The <reference) is in error if
ne applicable declaration exists in a containing <block>.

If only one applicable declaration exists in the <block> containing the first
applicable declaration, the <reference> identifies that declaration. However,
if the <block> contains more than one applicable declaration, the <reference>
must be a fully qualified <reference> to one of the declarations in that
<block>, and is resolved to identify that declaration. If it is not a fully
qualified <{reference> to one of the declarations in that <block>, the
{reference> is ambiguous and in error.

6-4 ‘ AG94

The presence or absence of {subscript> lists or <argument list>s does not affect
the resolution of <reference>s and cannot resolve otherwise ambiguous
{reference>s.

6.6 Locator Qualified References

Syntax:

{locator qualified reference>::= <locator qualifier>->
<based reference>

{locator qualifier>::= <reference>

<based reference>::= <simple reference)!
{subscripted reference)|
{structure qualified reference)>

The <locator qualifier> must be a <reference)> to a scalar locator variable or
scalar locator-valued function. Its value identifies a generation of storage
whose data and aggregate type are described by the declaration identified by the
<{based referenced>. Refer to paragraph 4.3.2.5 for a full discussion of based
variables.

It is an error to use a {locator-qualifier> to qualify a <reference> to a
nonbased variable. Implicit qualification derived from the <based attribute)> or
explicit qualification by an arrow operator is required for all <referenceds to
based variables except the <allocation reference) of an <allocate statement> or
<locate statement>, and the <reference> of a <refer option>.

Examples:

P->X
S.ITEM(I,J)->TABLE.ENTRY
F(X+Y)=->GAMMA(K)
HEAD->LIST.NEXT->LIST.VALUE

The last example shows a based <locator qualified reference>, HEAD->LIST.NEXT,
used as the <locator qualifier> of LIST.VALUE.

6.7 Eunction References

The evaluation of a <funetion reference)> results in the invocation of an entry
value. The value of the <function referenced is the value returned by the
invoked entry.

The syntax of a <function reference> differs from that of a <subscripted
reference> only when the <function reference> has multiple or empty <argument
list>s. 1In order to recognize a <function reference> with a single, nonempty,
<argument 1list>, the compiler examines the {subscripted reference>. If the
declared name identified by the {subscripted reference> has no dimensions, the
{subscripted reference> is a <function reference>; otherwise, it is a
{subscripted reference).

A <structure qualified Treference) containing two or more <subsecripted
reference>s is examined to determine if it is a {function reference>. If the
declared name identified by the <structure qualified reference> has n dimensions
then the leftmost n <subseript>s are considered part of the <structure qualified
reference>, and any other parenthesized lists must follow the rightmost name.
If a parenthesized 1list follows the <structure qualified reference> it is an
<argument list> of the <function reference>. Arguments and <subseript>s cannot
appear in the same parenthesized list. -

6=5 AG9Y

Syntax:
<function referenced>::= <entry reference><argument list>
{entry reference>::=z <reference>
<argument list>::= ([<expression>[,<expression>]...])

Evaluation of the <entry reference> must yield a sealar entry value. A
<function reference> is distinguished from a <reference> to an entry value by
the presence of an <argument list>. The <argument list> is empty only if the
entry has no parameters.

Examples:

declare F entry() returns(ptr);
declare G entry(fixed) returns(bit(1));

A <reference> to F is a <reference> to the entry value of F and is not a
<function reference>. A <function reference> to the value returned by the
invocation of F is written as F(). Similarly a <function reference> to G is
written as G(K) while a <reference> to the entry value of G is written as G.

Since the entry value may itself be a <function reference>, it is possible to\
have multiple <argument listd>s.

Example:
declare F entry(ptr) returns(entry(fixed) returns(float));

A <reference> to F(P)(I) is a <function reference> which returns a
floating-point value. A <reference> to F(P) is a <function reference> which
returns an entry value. A <reference> to F is a <reference> to the entry value
of F and does not invoke F.

The entry value may be any <reference> including <locator qualified referenceds
and <structure qualified reference>s with or without <subscript>s. The only
restriction on the <reference> is that it must yield a scalar entry value.

Example:
declare F(5,6) entry(fixed,fixed) returns{ptr);

A <reference> to F(I,J) is a <reference> to the entry value of the (I,J) element
of the array F. A <reference> to F(I,J)(K,L) is a <reference> to the pointer
value returned by the invocation of the (I,J) element of the array F.

Example:
declare 1 §,2 B(N),3 E entry() returns(char(*));

A <reference> to S.B(I).E or any -equivalent <reference> such as S.B.E(I),
S(I).B.E, or S.E(I), are all <reference>s to the entry value of E and are not
<{reference>s to the value returned by E. S.B(I).E(), S.B.E(I)(), or S(I).B.E()
are <function reference>s that invoke E.

The declaration of an entry variable or constant must contain an {entry
attribute> giving <descriptor>s of all parameters, and a <returns attribute)
describing the return value if the entry is to be invoked as a function. Refer
to Section 5 for a discussion of declarations.

6=6 AG94

6.8 Built-in Function References

A built-in function is an intrinsic part of the PL/I language. All <referenceds
to built-in function names are <function references in that they refer to the
value returned by the function. A built-in funetion name has no entry value and
cannot be used in contexts that require entry values. Built-in functions that
take no arguments may be referenced with or without an empty <argument 1listD.
Refer to Section 13 for a complete discussion of all built-in functions.

6.9 Ge i eferences

If the name identified by an <entry reference> in a <function reference> or in a
{ecall statement> is declared with a <generic attribute>, the <entry reference)
is a generic reference. The compiler transforms a generic reference into an
<entry reference> to one of the entries specified by the <generic attribute>.
The proper entry is selected by matching the <alternativebs specified by the
<generic attribute> against the arguments of the generic reference. For
descriptive convenience the syntax of the <generic attribute> is repeated here.
Refer to Section 5 for a discussion of declarations.

Syntax:
<generic attribute>::= generic[(<alternative list>)]
<{alternative list>::= <alternative>(,<alternative>]...
<alternative>::= <entry referenced>when([<selector>])
<entry reference>::z <reference)
<{selector>::= <arg selector>{,<arg selector>]...

{arg selector>::= ¥|[<level>]<attribute set)>!
{level>[<attribute set>]

attribute set>::= <attribute)...

The {arg selector>s of the leftmost <alternative> are matched against the
arguments of the generic reference. An asterisk <arg selector> matches any
argument; otherwise, an <arg selector> only matches an argument if the argument
has every <attribute> found in the <arg selector>. The argument's precision is
considered to match the <arg. deseriptor> only if it lies within the range
specified by the <precision attribute> given in the {arg selector>. An asterisk
{extent expression> is considered to match any <extent -expression> of the
argument.

A structure parameter of a generic entry must be represented by a set of two or
more <arg selector>s containing <leveldls. In this case, the set of <arg
selector>s must satisfy the constraints on <level>s given for <desecriptor>s of
an <entry attribute> in paragraph 5.4.17. If an <arg selector> does not
represent a structure parameter, it cannot have a <level).

A structure argument matches a set of <arg selectords with <levelds enly if the
structure and each member of the structure match the corresponding <arg
selectci> in the set. If all <arg selector>s of an <alternative> match the
arguments of the generic reference, the generic reference is transformed into an
{entry reference> to the <entry reference> given by that <alternative>;
otherwise, the next <alternative> is tried. The program is in error if no
<alternative> matches the generic reference. A generic reference with no
arguments is transformed into the leftmost <alternative> that has no {arg
selector>s.

6-7 AG94

Example:

declare F generic(F1 when(binary,pointer),
F2 when(decimal,pointer));

declare F1 entry(fixed binary,pointer) returns(fixed);
declare F2 entry(fixed decimal,pointer) returns(fixed);
declare X fixed binary, Y pointer;

A = F(X,Y);

In this example, the generic reference F(X,Y) is transformed into the <function
reference> F1(X,Y).

6.10 Parameters and Arguments

An argument is an <expression> used in the <argument list> of a <call statement>
or <function reference>, A garameter is a name declared in the invoked
procedure and used by the invoked <{procedure> to reference an argument. The ith
argument in an <argument list> corresponds to the ith parameter specified in the
<parameter list> of the invoked entry. The correspondence between an argument
and a parameter lasts until the block activation that established the
correspondence is deactivated by a <return statement> or nonlocal goto.

6.10.1 Argdment Passing By-value or By-reference

When an argument is passed by-value, it is evaluated and assigned to a unique
generation of storage in the calling <procedure> and that generation 1is
associated with the parameter. Since the generation of storage associated with
the parameter is not the generation occupied by the original argument,
assignments of values to the parameter by the invoked procedure do not affect
the value of the argument 1in any way. Similarly, changes made to the value of
the original argument, while the block activation created by the invecaticon of

the entry is still active, do not affect the value of the parameter.

When an argument is passed by-reference, its generation of storage is associated
with the parameter. The parameter thus shares the same generation of storage as
the original argument and either can be used to assign values to the generation.

An argument is passed by-reference only when it is a <reference> to a variable
whose <attributeds and extents match the <attribute>s and extents declared for
the parameter. The following <attribute>s must match:

{fixed attribute>, <float attribute>, <binary attribute>, <decimal
attribute>, <real attribute>, <complex attribute>, <precision attribute>,
<bit attribute>, <character attribute>, <picture attribute>, <pointer

attribute>, <offset attribute>, {area attribute>, <label attribute>,
<format attribute>, {entry attribute>, <file attribute>, <varying
attribute>, {nonvarying attribute>, {aligned attribute>, <unaligned

attribute>, <signed attribute>, <unsigned attribute>.

The <parameter descriptor list> of an <entry attribute> and the <reference
of an <offset attribute> are not involved in the matching process.

Attributes not included in the above list are not considered 1in the
matching operation, but if the argument is an array, then the <dimension
attribute> of the parameter must give the same dimensionality as the array
argument.

7/78 ' 6-8 AG94B

It is an error to pass an unconnected array by-reference to a parameter declared
with constant extents.

If an argument is a <reference> to a variable that does not match the parameter,
it cannot be passed by-reference and is passed by-value. A <literal constant>,
a <reference> to a named constant, a <reference> enclosed in parentheses, and a
<{reference> to an isub-defined array (not scalar elements of an isub-defined
array) are considered <expression>s and are passed by-value.

6.10.2 Argument Conversion and Promotion

The evaluation of an argument passed by-value includes the conversion and
promotion necessary to force it to conform to the data type and aggregate type
of the parameter. If the argument cannot be converted or promoted to conform to
the parameter the program is in error. Refer to Sections 8 and 9 for
discussions of conversion and promotion.

6.10.3 Asterisk and Constapt Extents of Parameters

A parameter may be declared with either constant or asterisk extents. (An
extent is an array <bound>, string <length>, or <area size>). If a parameter is
declared with asterisk extents the asterisks are replaced by the extents of the
argument that corresponds to the parameter. This replacement occurs each time
the parameter is associated with an argument and holds only so long as the
parameter remains associated with the argument.

For the purpose of determining whether an argument is to be passed by-value or
by-reference, an asterisk extent is considered to ™match" any extent of the
argument.

An array parameter that corresponds to an unconnected array argument must be
declared with asterisk bounds. (Most cross-section <referenced>s refer to
unconnected array values.)

If a parameter is declared with constant extents, only arguments that have
identical constant extents are considered to match the parameter.

6.10.4 Storage of 3 Parameter

Since the generation of storage associated with a parameter is always supplied
by 1its corresponding argument, parameters have no <initial attribute) and are
never allocated a generation of storage. The scope of a parameter is always
internal to the <block> in which the name appears as a parameter.

It is an error to reference a parameter that is not associated with an argument.

6.11 Reducibilityv of Functions

If each invocation of an entry produces no side-effects, returns a value that
depends only on the values of the arguments passed to that invocation, and
invokes only reducible functions, the entry is a pedueible function. A
- side-effect is any change in the value of any variable, file-state bloeck, or
data set known ocutside of the invoked entry or any of its dynamic descendents.
Any entry that is not reducible is irreducible.

6-9 . AG94

During evaluation of an <expression> the order of evaluation of <referenced>s to
irreducible functions is not defined, but each such <reference> is evaluated. &
{reference> to a reducible function might not be evaluated if the compiler
detects that such an evaluation would yield the same value as some previous
evaluation. A <reference> to a reducible function might be evaluated before the
{statement> in which it is written is executed, but a <reference> to an
irreducible entry is always evaluated during the execution of the <statement> in
which it is written. Refer to paragraph 5.4 for a discussion of the <reducible
attribute> and <irreducible attribute>.

6-10 AG94

SECTION 7

EXPRESSIONS

There are three kinds of <expression>s: primitive expressions, prefix

expressions and infix expressions. A pprimitive expregsgjion is a <reference> or a
{literal constant>, a prefix expregsion is a prefix operator preceding one
operand, while an jnfix expression is an infix operator between two operands.

An operand is one of the three kinds of <expression>s.

The value yielded by an <expression) has a data type and an aggregate type.
Since <expression>s always yield values of the same data type and aggregate
type, except for changing array-extents, they are characterized by their data
type and aggregate type, and are referred to as: secalar <expression>s, array
{expression>s, scalar pointer {expressiond>s, etec.

The data type of an <expression> is one of the data types described in paragraph
4.1, and the aggregate type is one of the aggregate types described in paragraph
4.2, ’

7.1 Eyal i ions

7.1.1 Evaluation of Primitive Expressions

Since primitive expressions contain no operators, their evaluation consists
Solely of evaluating a <reference> or a <literal constantD).

The aggregate type and data type of the value yiélded by evaluation of a
primitive expression are determined by the declaration of the name identified by

the <reference> or the declaration of the <literal constant>. If the primitive
expression is a <function reference>, the aggregate type and data type are the
aggregate type and data type of the value returned by the function.

The value yielded by evaluation of a primitive expression is the value of the
variable or constant identified by the <reference> or <literal constant). It

the primitive expression is a <funection reference>, the value of the evaluated
primitive expression is the value returned by the function.

7.1.2 Evaluation of Prefix Expressions

The evaluation of a prefix expression consists of:
1. The evaluation of the operand.
2. The conversion of the value of the evaluated operand to the data type

required by the operator. If the operand is an aggregate, each scalar
component is converted to the required data type.

T-1 AG94

3. The application of the operator to the converted value of the operand. Ifr
the operand is an aggregate, the operator is applied to each scalar
component of the aggregate.

The result of the evaluation of a prefix expression is a value whose aggregate
type 1is the aggregate type of the evaluated operand. The data type of each
scalar component of the result is the data type of the corresponding scalar
component of the converted operand.

7.1.3 Evaluation of Infix Expressions

The evaluation of an infix expression consists of:
1. The evaluation of both operands.

2. The promotion of the two operands to the highest common aggregate type as
described in Section 9.

3. The conversion of the operands to data types acceptable to the operator.
If the operands are aggregates, corresponding scalar components are
converted to the required data types. ‘

4. The application of the operator to the converted values of the promoted
operands. If the operands are aggregates, the operator is applied to each
pair of corresponding scalar components of the operands.

The result of the evaluation of an infix expression is a value whose aggregate
type 1is the common aggregate type of the promoted operands. The data type of
each scalar component of the result is determined by the data types of the
corresponding scalar components of the converted and promoted operands.

T.1.4 Qrder of Evaluation

The order of evaluation of an <{expression> is determined by the precedence of
the PL/I operators and by the parenthesization of subexpressions.

Within a pair of parentheses, operators are evaluated according to their
precedence. Operators of higher precedence are evaluated before operators of
lower precedence.

Operators of equal precedence are evaluated from left-to=-right, except for the
exponentiation and prefix operators which are evaluated from right to left.

The precedence of PL/I operators is:

Highest
i ** " oprefix + prefix -

LA

%?fix + infix -

v
Lowest

The order of <expression> evaluation is determined by the precedence of
operators and by parenthesization. However, within these constraints, the order
of evaluation is not defined. A program that depends on any of the following is
in error and the results of its execution are not defined:

1. The order in which operands are promoted to higher aggregate types.

7-2 AG9Y

2. The order in which operands are converted to different uata types.

3. The order ~in which the scalar components of aggregate operands are
converted and operated upon by infix or prefix operators.

4. The order in which <basic expression>s are evaluated.
5. The frequency with which 3 reducible <function reference)> is evaluated. An
irreducible <function reference> is evaluated once for each occurrence of

the <function reference> in the text of an <external procedure> except as
explained in 7.1.5.

7.1.5 Optional Evaluation

If the result of an operator can be determined without evaluation of one or more
of its operands and no operand contains irreducible <function reference>s, the
operands are not necessarily evaluated.

A program that depends on the full evaluation of all operands is in error and
the result of its execution are undefined. Similarly, a program that depends on
an operand not being evaluated is in error.

The following are invalid:

if p=null | p=>x=5 then
if x=0 | y/x then

If the value of an <expression)> or <reference> does not depend on the value of a
contained <function reference>, then that <function reference> is not
necessarily evaluated.

7.1.6 Expression Evaluation and Conditions

The <on statement> and <condition prefix> allow a program to detect and respond
to variocus states of the executimg program known as conditions. Refer to
Section 10 for a full discussion of conditions, signals and <on unitSs.

In general, the order in which conditions are detected and the frequency with
which they occur are not defined. This is due to the fact that the order of
{expression> evaluation is not strictly defined.

Conditions that are signalled during <expression> evaluation cause the
evaluation to be suspended and control to enter an <on unit>.” In most cases,
the program is in error if the <on unit> returns control to the point where the
condition was detected. Refer to the description of each condition in paragraph
10.4 to see if a particular <on unit> can return control.

An <on unit> entered as a result of a condition signalled during {expression>
evaluation cannot access variables that are assigned values by the interrupted
{statement>. Similarly, the <on unit> cannot assign a value to any generation
of storage accessible at the point where the signal occurred, nor can it
allocate or free such a generation,

Example:

on zerodivide begin;

end;

oo’
-
n o
>0
wo

/B + A/B

11/77 7-3 AG94A

In this example:
1. the value of C is not defined upon entry to the <on unit>.
2. if the <on unit> does a normal return the result of the program is
undefined, regardless of whether or not the <on unit)> assigned a new value
to B.

3. the number of times the zerodivide condition is signaled is not defined,
but at least one will be signalled.

7.2 Formal Syntax of Expressions

The syntax given in this section defines the precedence of operators and an
order of evaluation of <expression>s. The actual order of evaluation may differ
from the order expressed by these syntax rules only in the following cases:
1. If the result of an operator can be determined without the evaluation of
one or more of 1its operands, and no operand contains an irreducible
<function reference>, the operands need not be evaluated.

2. The order of evaluation of the <basic expression>s contained within an
{expression> is not defined.

Syntax:

{expression>::= <expression seven)|
{expression>j<expression seven>

{expression seven>::z <expression six>|
{expression seven>&<expression six>

{expression six>::= <expression five)|
<expression six>{={"=i<i"<i<=1>i">i>=}<expression five>

<expression fived>::= <expression four>|
<expression five>|i<expression four>

{expression four>::= <expression three)|
Cexpression four>{+|-}<expression three>

<expression three>::= <expression two>|
{expression three>{*|/}<expression two>

{expression two>::= <basic expression>|<simple expression>|
{parenthesized expression)|<expression one>

<expression one>::= {<basic expression>|
<parenthesized expression>}#*#<expression two>

<{simple expression>::= {+{-]"}<expression two>
{parenthesized expression>::= (<expression>)
<basic expression>::= <reference>|<literal constant>|<isub>

Note that an <isub> is valid only in <expression>s that are part of the <base
reference> of a <{defined attribute)>.

T4 AG9Y

7.3 Operators

7.3.1- Arithmetic Operators

The prefix arithmetic operators are:

+ plus
- minus

The infix arithmetic operators are:

+ add

- Subtract
* multiply
ﬁ divide

* exponentiate

T.3.1.1 Operand Conversion for Arithmetic Operators

Arithmetic operators require arithmetiec operands and force conversion of their
operands. The conversions are performed according to the rules given in Seection
8, and the target for the conversions is given by the following rules:

1. A character-string operand, X, is converted to an arithmetic value, X',
where the data type of X' is the data type that a fixed-point, decimal,
real value of precision (59,0) would have been converted to, had it appeared
in place of X.

2. A bit-string operand, X, is converted to an arithmetic value, X', where the
data type of X' is the data type that a fixed-point, binary, real value of
precision (71,0) would have been converted to, had it appeared in place of
X.

3. If the operands of an arithmetic infix operator differ in mode, base, or
type, the operands are converted to the target mode, base, and type given
by the following rules. *

The target attributes are: complex, if the modes differ; binary, if the
bases differ; and floating-point, if the types differ; otherwise, the target
has the common mode, base, or tvpe, The precision of the two operands may
differ without causing any conversion. If a conversion oceurs due to a
difference in mode, base or type, the precision of the converted operand is
given by the rules in paragraph 8.2.10.

The exponentiation operator is an exception to these rules. See Section
7.3.1.2.3.

Example:

declare A character(5), B float binary(27);

C = A+B;
In this example, A is converted as if it were a real, fixed-point, decimal,
integer of precision (59,0). The target mode is real, the target base is
binary, and the target type is floating-point. Because B already has the

target attributes, it is not converted, but A is converted to a real,
floating-point, binary value of precision (63).

3/81 7-5 AG9U4E

7.3.1.2 Results of Arithmetic Operators

After the operands have been converted, the operation is performed. The result
is an arithmetic value whose type, base, mode and precision are determined by
the converted operands and the operator as described in the following sections.

A decimal floating-point result of precision (p) contains only the most significant
p digits of the true arithmetic result rounded at the (p+1)th digit.

A binary floating-point result of precision (p) contains the most significant n
digits of the true arithmetic result, where n is 27 if p<27 and n is 63 if p>27.
When the final result of the evaluation of an <expression> is assigned to a
variable or to a generation of storage to be passed as an argument, n significant
digits are stored if the target is unpacked, but p significant digits are stored
if the target is packed. In the latter case, excess low order digits are truncated.

The precision rules of fixed-point operations are such that no high order digits
of the true arithmetic result are lost. Unless the operation is division or the
result precision has reached the limits of the machine (59 for decimal or 71 for
binary), no low order digits of the true arithmetic result are lost. 1In the
latter case, the precision rules given below indicate exactly when low order
digits are lost.

7.3.1.2.1 Prefix Operations

The prefix operators plus and minus yield a result having the type, base, mode
and precision of the converted operand. The value of the result of a plus
operator is the value of the converted operand. The value of the result of a
minus operator for a real operand is the value of the converted operand with its
sign reversed. The value of the result of a minus operator for a complex operand
is the value of the converted operand with the signs of the real and imaginary
parts reversed.

T7.3.1.2.2 Infix Operations

If the operation is exponentiation, see Section 7.3.1.2.3.

If the converted operands are floating-point values, the result is a floating-point
value. The base and mode are the common base and mode of the converted operands,
while the precision of the result is the greater of the precisions of the two
operands.

Fere

If the converted operands are fixed-point

v he result depends on the
operator and the converted operands 2z describ foi

_ -

i€ (ollowing:

alues,
PO
SY W v

~«

Let N be 71 if the common base is binary and let N be 59 if the common base
is decimal.

Let (p,q) be the precision of the first operand, and (r,s) be the precision
of the second operand.

If the cperation is addition or subtraction the result is a fixed-point

value whose base and mode are the common base and mode of the converted

operands. The precision of the result is:
(min(H,max(p-q,r-s)+max(q,s)+1),max(q,s))

The value of the result is the sum or the difference of the two operands.

3/8% T7-6 AGY9AE

If the operation is multiplication, the result is a fixed-point value whose
base and mode are the common base and mode of the converted operands. The
precision of the result is:

(min(N,p+r+1),q+s)
The value of the result is the product of the two operands.

If the operation is division, the result is a fixed-point value whose base
and mode are the common base and mode of the converted operands. The
precision of the result is:

(N,N-p+q-8)

The value of the result is the quotient of the first operand divided by the
second. If the quotient exceeds the precision of the result, the least
significant digits of the quotient are truncated to form the result. Note
that the result always has the maximum precision allowed by the common
base, and that as many fractional digits are preserved as iz allowed by the
machine., Use of these values as operands of other fixed-point computations
can easily lead to situations that produce the fixedoverflow or size conditions.

Example:

1/3+25
This example produces fixedoverflow because the division yields 0.333...3
and when the addition aligns the decimal points, the sum exceeds the limit,
N, of the machine.

The divide built-in function described in paragraph 13.2.8 can be used to
control the precision of the result of fixed-point division.

7.3.1.2.3 Exponentiation

For the exponentiation operator, determine the target attributes and convert the
operands as follows:

If the first operand is fixed-point, let (p,q) be its precision. Let N be 71 if
the base of the first operand is binary, and let N be 59 if the base of the
first operand is decimal.

1. If the first operand is fixed-point, the second operand is a fixed-point
{real constant> with a scale factor of zero, the value, E, of the second
operand is positive, and (p#!)‘E-?ﬁH, then the result is fixed-point with
the base and mode of the first operand. The precision of the result is:

((p+1)%E=1,q#*E)

No conversion is performed on the operands.

3/81 ‘ 77 AGSUE

2. If the second operand is real, fixed-point, with precision (r,0), and case
1 does not apply, then the result is floating-point with the base and mode
of the first operand. The first operand is converted to floating-point.
The precision of the result is the precision of the converted first operand.
No conversion is performed on the second operand.

3. If neither case 1 nor case 2 applies, then the result is floating-point.
The base and mode of the result are determined according to the target
attribute rules in section 7.3.1.1. The operands are converted to the
target mode, base, and type. The precision of the result is the greater of
the precisions of the converted operands.

The result of the exponentiation operation is normally a machine-dependent
approximation to X raised to the power Y, where X is the first operand and Y is
the second operand. However, there are cases for which X%*%Y is defined as
follows:

If X and Y are real values:

If X<0 and neither case 1 nor case 2 above applies, the error condition is
signalled.

If X=0 and Y<0, the error condition is signalled.
If X=0 and Y>0, the result is 0.
If X>0 and Y=0, the result is 1.

If X is complex and Y is real:
If X=0 and Y>0, the result is 0.
If X=0 and Y<0, the error condition is signalled.
If X£40 and Y=0, the result is 1.

If Y is a complex value:

If X=0, the real part of Y>0, and the imaginary part of Yz0, the result is
0.

If X=0 and if the real part of Y<0 or the imaginary part of Y#0, the error
condition is signalled.

If X£0 and Y=0, the result is 1.

7.3.2 Bit-string Operators

The bit-string onerators are:
~ complement
i
I

inclusive or
& and

3781 7-8 AG94E

7.3.2.1 Operand Conversion for Bit-string Operators

Bit-string operators require bit-string operands and force conversion of their
operands to bit-strings according to the rules given in Section 8. The lengths
of the converted operands are defined by the following rules:

A character-string operand is converted to bit-string of the same length as
the character-string.

An arithmetic operand is converted to a bit-string whose length is defined
in paragraph 8.2.8.

7.3.2.2 Results of Bit-string Operators

The result of the complement operator is a bit-string value whose length is the
length of the converted operand. The result value is the complement of the
value of the converted operand (each 1 becomes a 0, and each 0 becomes a 1).

The bit-string infix operators produce a bit-string value whose length is the
maximum of the lengths of the two converted operands. Prior to evaluation of
the operator, the shorter operand is effectively padded on the right with zero
bits until it is the length of the longer operand. Each bit of the result is
developed by performing the indicated logical operation on the corresponding
bits of the two operands. The following table defines the logical operations
for a given bit.

3/81 7=8.1 AGY4E

This page intentionally left blank.

3/81 AG94E

First ’ Second Result Result

Operand Operand of And of Or
1 0 0 1

1 1 1 1

0 0 0 0

0 1 o] i
7.3.3 Concatenate Operator

The concatenate operator is !}. It is an infix operator that yields either a
bit-string or character-string.

7-3.3.1 QOperand Conversion for Concatepation

If both operands are bit-strings, no conversion oceurs and the result is a
bit-string; otherwise, the result is a character-string and both operands are
converted to character-strings according to the rules given in Section &. The
lengths of the converted operands are defined by the following rules:

An arithmetic operand is converted to character-string according to the
conversion rules given in paragraph 8.2.7.

A bit-string operand is converted to a character-string whose length 1is the
length of the bit-string.

7-3.3.2 Result of Concatenation

The result is a string whose type is the common type of the converted operands
and whose length is the sum of the lengths of the converted operands.

The value of the result is the converted value of the first operand concatenated
with the converted value of the second operand.

7.3.4 Relational Operators

The relational operators are:

equal
= not equal
less than
< not less than
= less than or equal

A I N
1]

Y\

greater than
not greater than
greater than or equal

\%4
n v

7=-9 AG94

7.3.4.1 Qperand Conversion for Relational Operators

Comparison is performed between values of the same data type. If the operands
are of different types, they are converted according to the following rules:

If either operand 1is arithmetic or declared with a <numeric picture>, the
operands are converted as if the operator were an arithmetic infix operator.

If one operand is a character-string and the other is a bit-string, the
bit-string is converted to a character-string whose length is that of the
bit-string.

If one operand is an offset value and the other is a pointer value, the offset
value is converted to a pointer value.

All conversions are performed according to the rules given in Section 8. No
other conversions are performed.

7.3.4.2 ZIypes of Comparison

Comparison is defined for all data types except area data. Except for those
cases given 1in paragraph 7.3.4.1, both operands must be of the same data type.

Character-string, bit-string, and real arithmetic values may be compared using
any relational operator. Complex arithmetic, label, format, entry, pointer,
offset, and file values can only be compared using the equal and not equal
operators.

Arithmetic values and character-string values declared with a <numeric picture>
are compared algebraically.

Character-string values, other than those declared with a <numeric picture)>, are
compared by extending the shorter operand to the length of the longer operand by
padding the shorter on the right with blank characters. The two strings are
then compared from left-to-pright using the ASCII cgllating seguence as given in

the MPM Reference Guide.

Bit-string values are compared by extending the shorter operand to the length of
the longer operand by padding the shorter on the right with zero bits. The two
operands are then compared from left-to-right with 0 comparing less than 1.

Label values compare equal only when they identify the same <statement> and the
same block activation record. Refer to Section 3 and paragraph 4.1. Note that
a label value that identifies a <label prefix> on a <null statement> does not
compare equal to a label value that identifies any other <statement).

Format values compare equal only when they identify the same <statement> and the
Same block activation record. Refer to Section 3 and paragraph 4.1.

Entry values compare equal only when they identify the same entry and the same
bloeck activation record. Note that multiple <label prefix>s on an <entry
statement> or <procedure statement> do not produce entry values that compare
equal because each <label prefix> results in the creation of a unique <entry
statement>.

Pointer values compare equal only when they identify the same generation of
storage, or when they are both null.

7-10 AG94

Offset values compare equal when they identify the same generation of storage ih
@ given area. They also compare equal if they identify generations of storage
in two different areas whose entire history of allocation and freeing 1is
identical. Two areas have identical histories only if one has been assigned to
the other and no subsequent allocate or free operations were performed on either
area, or if identical sequences of allocate and free - operations have been
performed on the areas. Two offset values also compare equal when they are both
null.

A locator, pointer or offset, value identifying a generation of a structure
variable or area variable does not necessarily compare equal to 2 locator valus
identifying the first member of the Structure or first generation allocated in
the area. A locator, pointer or offset, value identifying a generation of an
array or array of structures does not necessarily compare equal to a locator
value that identifies the first element in the array. Programs that depend on
such comparisons are in error.

File values compare equal only if they identify the same file-state block.
7.3.4.3 Re t Relati

Relational operators compare the values of their operands and yield a bit-string
of length 1. The value of the result is "1"p if the relationship is true;
otherwise, the value of the result is "0"b.

T7=-11 ’ AG94

SECTION 8

CONVERSION OF DATA TYPES

As defined in Section. 4, a data type is a set of values. Each value is a
member of only one such set. A value conformg to a data type if it is a member
of that set. If a value does not conform to the data type required by the
context in which the value appears, it is converted to the required data type.
If conversion from the original data type to the required data type is not
defined, the program is in error.

8.1 Contexts That Force Conversion

Each of these contexts forces values to be converted. The resultant data type

is called the target data type.

1. The value of the <expression> of an <{assignment statement> is converted to
a value that conforms to the data type of the <target> of the <assignment

statement>.
2. The value of an argument of a <function refarence> or {eall statement> is
converted to conform to the data type given in the corresponding <parameter

descriptor> of the entry declaration.

3. The value of an argument to a built-in funetion is converted to conform to
the data type required by the function. Since some built-in functions are
generic and others do not allow conversion, some built-in functions do not
convert their arguments. Refer to Sections 13 for a desceription of
built-in functions.

4. The operands of an operator are converted to conform to a data type
determined by the operator. Infix operators convert their operands to a
data type determined by the unconverted data types of both operands. Refer
to Sections 7 for the rules used to determine " the target data type for
operand conversion.

5. A value of a <subseript>, <pagesize option>, <linesize option>, <skip
option>, <line option>, <area size>, string <length>, <ignore option>,
<{position>, or array <bound> is converted to a fixed-point, binary, real,
integer.

6. The value of a <locator qualifier> is converted to a pointer value,

7. The value of a {string option> of a <{get statement> 1is converted to a
character-string. .

8. The value of a <key option> or <keyfrom option> is converted to a
character-string.

o

9. The value of a <title option> is converted to a character-string.

10. A value placed in an output data stream by a <put statement> is converted
to a character-string.

8-1 AGY94

11.

13.

14,

15.
16.

17.

19.

20.

21.

8.2

A value extracted from an input data stream by a <get statement> is
converted to conform to the data type of the list element to which it is
assigned. If the conversion 1is controlled by a <data format>, the
character-string value from the data stream is first converted to the data
type specified by the <data format> and is then converted to the data type
specified by the list element to which it is assigned.

The values of all <expression>s in a <format specification 1list> are
converted to fixed-point, binary, real, integers.

The value of a <return value> is converted to conform to the data type
given in the <returns attribute> of the <entry statement> or <procedure
statement> whose execution created the current block activation.

The value of the <expression> in an <if statement> is converted to a
bit-string.

The value of a <while expression> is converted to a bit-string.

Each value assigned to the <index> of a <multiple do> 1is converted to
conform to the data type of the <index>.

The value of the <expression>.in an <extent expression> is converted to
conform to the data type of the <reference> in the <refer optidon> of the
<extent expression>.

The value of the <expression> in an <extent expression> is converted to a
fixed-point, binary, real, integer.

The value of each <expression> in a <substr pseudo> 1is converted to a
fixed-point, binary, real, integer.

The value of a <factor> in an <initial attribute> is converted to a
fixed-point, binary, real, integer.

The value of an <initial value> in an <initial attribute> is converted to
conform to the data type of the variable of which it is an initial value.

Conversion Rules

The language defines the following kinds of conversion:

Pointer to offset

Offset to pointer
Character-string to arithmetic
Character-string to bit-string
Bit-String to arithmetic
Bit-String to character-string
Arithmetic to character-string
Arithmetic to bit-string
Arithmetic mode conversion
Arithmetic type, base, and precision conversion
Format controlled conversion
Picture controlled conversion

No conversions are defined for label, entry, format, file, or area data.

8-2 AG94

8.2.1 Pointer to Qffset Conversjion

A pointer value identifying a generation of a based variable allocated within an
area, A, is converted to an offset value identifying that same generation. In
order for the conversion to occur, either the offset must have been declared
with an <offset attribute> containing a <reference> that identifies A, or the
conversion must have resulted from a <reference> o the "offset™ built-in
function whose second argument was A.

8.2.2 Qffset to Pojnter Conversion

An offset value identifying a generation of a based variable allocated within an
area, A, is converted to a pointer value identifying that same generation. In
order for the conversion to occur, either the offset must have been declared
with an <offset attribute> containing a <reference> that identifies A, or the
conversion must have resulted from a <reference> to the "pointer™ built-in
function whose second argument was A.

8.2.3 Character=String to Arithmetic Conversion

If the target has any of the type, base or mode omitted, the missing
attribute>s are taken from the set: fixed, decimal, real. If the target
precision is omitted and the target.is fixed-point binary, the precision of the
target is. 71, If the target precision is omitted and the target is
floating=-point binary, the target precision-is 63. If the target precision is
cmitted and the target is fixed~or floating-point decimal, the target precision
is 59.

If the string is a null string or contains only blank characters, the value of
the result is zero.

If the string is not null or all blank, it must be deseribed by:
<valid string>::= [<blank>...]<numeric constant>[<blank>...]
<numeric constant>::= [+|-]<arithmetic constant>!

[+}-]<real constant>{+|-}<imaginary constant>

If the string is not null, blank, or described by this syntax, the conversion
condition oeccurs. i

The character-string value is converted to its intrinsic arithmetic value. That
value is then converted to conform to the type, base, mode and precision of the
target.

During the conversion from character-string to arithmetic, the conversion, size,
overflow or underflow conditions may occur. The conversion condition occcurs
when the character-string is invalid as previously described. The size
condition oceurs when the target data type is fixed-point and its precision is
insufficient to represent all of the integral digits of the converted value.
The underflow or overflow conditions occur when the target data type is
floating=-point and the value: is. too small or too large to be represented. Refer
to Sections 10 for a full discussion of conditions.

Examples:
Character-string Result
"5 63" 5 or 5.63 depending
on the target
nn O
" 10e" conversion: condition

8-3 AGOY

8.2.4 Character-Stri it-Stri Conv,

Let X be the string to be converted.

If X is a null character-string, it is converted to a null bit-string, X';
otherwise, it is converted to X', where X' is a bit-string of length n, where n
is the length of X. For k=1,2...,n, the kth bit of X' is 0 if the kth character
of X is 0, and the kth bit of X' is. 1 if the kth character of X is 1. If the kth
character of X is neither 0 nor 1, the conversion condition occurs.

If no target length is given, the result is X'.

If the target length is greater than n, X' is extended on the right with zeros
until it 1is the length of the target. The result is the extended value of X'.

If the target length is less than n, the stringsize condition occurs. If the
<on unit> returns to the point where the condition was detected, the result is
formed by truncating the rightmost n-m bits of X', where m is the length of the
target.

Examples:

Character-string Result

1011 "1011"b

ne "nb

10" conversion condition

8.2.5 Bit-gstpipg to Arithmetic Cogversion

If the target has any of the type, base or mode omitted, the missing
attribute>s are supplied from the set: fixed, binary, real. If the target
precision is omitted and the target is fixed-point binary, the precision of the

- 71 T i kaveoad mrmand ad
LTy

3 Ams ddad AanAd o Famoad
s i1 >

- Py < A 4 e i
VNG vas EGU yl N e bd e W RE o b W WS A= T L2 v 59\' e
floating-point binary, the target precision is 63. If the target precision is
omitted and the target is fixed or flocating-point decimal, the target precision
is 59.

oo
var BT v

If the string is a null string, the value of the result is zero.

If the string is not a null string, the rightmost bit of the bit-string is
considered to be the units position of an unsigned binary integer of precision
n, where n 1is the 1length of the string. The value of that integer is then
converted to conform to the type, base, mode and precision of the target. If
the target is fixed-point and has insufficient precision to represent the
integral digits of the value, the size condition occurs.

Examples:
Bit-String Result
"101"b 5
nnb 0
"0000000"b 0

84 AG94

§.2.6 Bit-string to Character-String Conversion

Let X be the bit-string to be converted.

If X is a null bit-string, it .is " converted to a null character-string X';
otherwise, it 1is converted to X', where X' is a character-string of length n,
where n is the length of X. For k=1,2,...,n, the kth character of X' is 0 1if-
the kth bit of X is 0 and the kth character of X' is 1 if the kth bit of X is 1.

If no target length is given, the result is X'.

If the target length is greater than n, X' is extended on the right with blahkS
until it is the length of the target. The result is the extended value of Xr.

If the target length is less than n, the stringsize condition occurs. If the
<on unit> returns to the point where the condition was detected, the result is
formed by truncating the rightmost n-m characters of X', where m is the length
of the target.

| Examples:

Bit-String _ Result
101" 101
"“b nw

8.2.7 Arithmetic to Character-String Conversion

Let X be the arithmetic: value to be converted.

If the base of X is decimal, iet X' be X; otherwise, convert X to X', where the
type and mode of X' are the type and mode of X, and the base of X' is decimal.
The precision of X' is given by the- rules for base conversion described in
paragraph-&.?.lo. -

Let the precision of X" be (p) if the type of X' is floating-point, and let
(p,q) be the precision of X' if the type of X' is fixed=-point. Let an

intermediate result, S, be defined as a character-string whose value is
determined. by the following:

If the mode of X' is complex, S is: formed by converting the real part of X' to a
string, S1, and converting the imaginary part of X' to a string, S2, as if they
Wwere real numbers. If the imaginary part of X' is >0, S is formed by:
S1iim+"}is2
Otherwise, S is formed by:
s1;182
Before concatenation, an #i" is appended to. S2 and all leading blanks in S2 are
removed by shifting the nonblank characters of S2 to the left and filling the
vacated character positions with blanks. :
Example:

pEB-2.9 becomes: . =2.9ip88:

8-5 AG94

The following rules describe the conversion of X' when its mode is real:

If the type of X' is floating-point, the value of S is the value produced by

converting X' under control of a picture of the form:
"-9.v(p-1)9es999"

If the type of X' is fixed-point, the value of S is given by one of
following three cases:

For q=0, the length of S is p+3 and 1its value is the value of X' converted

under control of a picture of the form:

"(p+2)=-9v"

For p>q>0, the 1length of S is p+3 and its value is the value of X'

converted under control of a picture of the form:

"(p=q+1)=9.v(q)9"

For gq<0 or g>p, the 1length of S is p+3+k, where k is the number of digits
necessary to represent the value of q with no leading zeros. To form the
result S, let S' be the value of X' converted under control of a picture of

the form:

"(p)=9vf(=-q)"

Let E be the value of -q converted under control of a picture of the form:

"s(k)g"
The result S is formed by S'}i|"f"}|E.
Refer to paragraph 8.2.12 for a discussion of picture controlled conversion.
If the target length is not given;kthe result is 8.
Let n be the length of S and let m be the target length.

If m>n, m-n blanks are appended to the right of S to form the result.

If m<n, the stringsize condition occurs. If detection of the condition is not
enabled or if the <on unit> returns control to the point where the condition was

detected, the rightmost n-m characters of S are removed to form the result.

Examples:

Type of X! Precision of X' Value of X' Result
float 1) 0 $0.000e+000
float 4) 1.23 B1.230e+000
fixed (4,0) 0 BBBBBYO
fixed (4,0) 25 .1.1.0.1 .45
fixed (4,2) 0 BB¥BO .00
fixed (4,2) -12.34 B=-12.34
fixed (4,-2) 0 BEBBOL +2
fixed (4,=-2) 123000 B1230f+2
fixed (5,6) o] BEBBBOL-6
fixed (5,6) -.01 ~-10000f -6
fixed (3,3) 0 . $0.000
fixed (3,3) -,01 -0.010

T/79 8-6 AG94UC

8.2.8 Arithmetic_to Bit-string Conversion

Let X be the arithmetic value to be converted.

Let X' be a real, fixed-point, binary value of precision (p,0), where p is given
by the following: .

Attributes of X Value of p

binary fixed (r,s) min{(71,max(r-s,0j)

decimal fixed (r,s) min(71,max(ceil({r-s)*3.32),0))
binary float {r) min{7i,r)

decimal float (r) min(71,ceil(r#*3.32))

The functions "min™, "max" and "ceil" are described in Section 13.
The value of X' is the absolute value of the real part of X.

The size condition occurs if the precision of X' is such that it cannot
. represent the integral digits of the real part of X.

Let S be a bit-string of length p whose value is the string of binary digits
that represent. the value of X',

If the target length is not given, the result is S.

Let n be the target. length.

If n>p, n-p zero bits are appended to the right of S to form the result.

If n<p, the stringsize condition occurs. If the <on unit> returns control to

the point where the condition was detected, the rightmost p-n bits of S are
removed to form the result.

Examples:
Value of X Value of X' Precision of X® Result
5 5 (4,0) "0101"b
-4 4 (4,0) *"0100"d
0.7 0 (4,0) "0000"b
T 0 (0'0) nup
01b 1 (2,0) "01"b

8.2.9 Arithmetic Mode Conversiocn

If a complex value is converted to a real value, the result is the real part of
the complex value.

If a real value is converted to a complex value, the result is . a complex value
whose real part is the unconverted real value and whose imaginary part is zero.

If the tuse, type or precision of the: converted value is not that of the target,
it is converted to conform to the target according to the rules for base, type,
and. precision conversion.

Examplesz:
S5+21 becomes 5
5 becomes: 5+01i

8-T AGIA.

8.2.10 Arithmetic Type, Base and Precision Conversion

Let X be the arithmetic value to be converted. If the type of X is fixed-point,
let (p,q) be the precision of X; otherwise, let (p) be the precision of X.

Let the result X' have the type and base of the target. If the type of the
target is not given, let X' have the type of X. If the base of the target is
not given, let X' have the base of X. If the precision of the target is given,
let the precision of X' be the precision of the target; otherwise, the precision
of X' is given by the following table:

Attributes of X Attributes of X! Precision of X'

fixed binary fixed binary (p,q)

fixed decimal fixed binary (min(ceil(p#*3.32)+1,71),
ceil(g¥*3.32))

float binary fixed binary (p,0)

float decimal fixed binary (p,0)

fixed binary fixed decimal (min(ceil(p/3.32)+1,59),
ceil(q/3.32))

fixed decimal fixed decimal (p,q)

float binary " fixed decimal (min(ceil(p/3.32)+1,59),0)

float decimal fixed decimal (p,0)

fixed binary float binary (min(p;63))

fixed decimal
float binary
float decimal

float binary (min(ceil(p*3.32),63))
float binary (p)

float binary (min(ceil(p*3.32),63))
float decimal (min(ceil(p/3.32),59))
float decimal (min{(p,59))

float decimal (min{ceil(p/3.32),59))
float decimal (p)

fixed binary
fixed decimal
float binary
float decimal

of X converted
same value as

The value of X' is the value
cases, the value of X' is the

to the data type of X'. 1In most
X, but if the base of X' differs
from the base of X, the value of X' is an approximation to the value of X. If
the base of X' differs from the base of X, rounding occurs if X' is floating
point, while truncation occurs if X' is fixed point.

The overflow or underflow condition occurs if X' is floating-point binary and X
is a decimal number too large or too small to be represented by binary
floating-point. The size condition oceurs if X' is fixed-point and has
insufficient precision to represent the integral digits of the value.

Examples:

T/79

Attributes of X

fixed decimal prec(7,0)
fixed binary prec(17,0)
float decimal prec(10)
float binary prec(27)

Attributes of X'

fixed binary prec(25,0)
fixed decimal prec(7,0)
float binary prec(34)

float decimal prec(9)

8-8

AG94C

8.2.11 Format Controlled Conversion

Format controlled conversion occurs only when a <get statement> or {put
statement> containing a <get edit> or {put edit> is executed.

When a <format specification> is used to control conversion from a
character-string, it is described as input conversion, and when it is used to
control conversion to a character-string, it is described as output conversion.

The result of an input conversion is assigned to a 1list element and,
consequently, 1is converted to conform to the data type of the list element.
Refer to Section 12 for the syntax and semantics of <statement)s.

8.2.11.1 Fixed-Point Format

Syntax:

<fixed-point format>::= f(<Kw>[,<d>[,<k>]])

{Ww>::z <expression>

<d>::= <expression>

<k>::= <expressiom>
Evaluation of the width, <w>, the decimal location, <d>, and the scale factor,
<k>, must yield scalar arithmetic or string values that are converted to real

binary integers. Let w, d and k be the converted values., Both w and d must be
nonnegative. :

8.2.11.1.1 Fixed-Point Input Conversion

Let S be the character-string to be converted to the result X. The length of S
is w.

If w=0 or S is a string of all blanks, the result is a real, fixed decimal O
with precision 1 and scale 0.

If wA0 and S is not all blanks, S must be described by:
[<blank>]...[+}-1<decimal number>[<blank>]...

The string, S, is converted to a fixed-point, decimal, real number, X, whose
value, V, and precision, (p,q), are determined as follows:

V is the value of the integer represented by S. The decimal point, if any,
is ignored for this purpose.

P is the number of digits in S.
q is calculated: as j-k where:

J is the number of digits in S following the: decimal point, if one
occurs; or j is the value of d, if it appears; or j is 0.

k is given by"the-<fixed-point format> or is zero.
The: valuer of q must be in the range: -128<q<127.
The result is X. -

1T . 8-9- AG94A;

Otherwise, the conversion condition occurs. The value of the onsource built-in
is S. The value of the onchar builtin is the leftmost character in S that does
not meet the syntax for fixed-point input conversion.

Examples:
Value of S Format ,- Result
B7.2¥ £(5) 7.2
11111 £(5) 0
-THBY £(5) -7
B10.5 £(5,2) 10.5
100K £(5,2) 1.00
BBBBT £(5,0,2) 700
$100¥ £(5,4,-2) .0001

8.2.11.1.2 Fixed-Point Output Conversion

Let X be the value to be converted to the result string S. The length of S is
w. If d is omitted, let d be zero. If any expression in any of the following
{picture>s is negative, the size condition oceurs.

If w=0, S is a null string.

If d=0 and X<0, let s be min(59,w=1). The value of S is the value of X
converted under control of a <picture> of the form:

"(W=S=1)b(S=1)==Qy"

If d=0 and X>0, let s be min(59,w). The value of S is the value of X converted
under control of a <picture> of the form:

"(w=8)b(s=1)z9v"

If d#0 and X<0, let s be min(59,w=2). The value of S is the value of X
converted under control of a <picture> of the form:

"(WeS=2)b(S=d=1)}==9 v(d)9"

If d£0 and X>0, let s be min(59,w=1). The value of S is the value of X
converted under control of a <picture> of thg form:

"(We8=1)b(3=d=1)29.v(d)g"

Although the description of {fixed-point picture> editing in paragraph
8.2.12.3.1 specifies that low order digits are truncated when the conversion is
performed for a <fixed-point picture>, the remaining low order digit is rounded
if it is followed by a digit > 5. If k is given, the conversion to decimal
performed by the <fixed-point picture> effectively multiplies the decimal value
X' to be edited into the picture by 10#%k,

Note that the scaling performed by a {fixed-point format> effectively multiplies
the value being converted by a power of ten for both input and output
conversions. It differs from the scaling performed by the <{picture scale
factor> which effectively multiplies by a power of ten for input and divides by
a power of ten on output, Refer to paragraph 8.2.12.

The resulg is S.

1W/77 8~10 AGO4A

Examples:

Value of X _ Format Result
7.5 £(5,2) B7.50
Q £(5,2) ¥0.00
3.5 £(5) BB
0 £(5) - BBBBO
-7.5 £(5) BpB-8
12 £(5,0,2) 1200

8.2.11.2 Floating-Point Format

Syntax:

(floating-point format>::= e(<w>[,<d>[,<s>1])

{w>::= <expression>

<d>::= <expression>

<8>::= <expression>
Evaluation of the width, <w>, the decimal location, <d>, and the number of
significant digits, <s>, must yield scalar arithmetic or string values that are
converted to real binary integers. Let w, d and s be the converted values. All

three values must be nonnegative. If given, w, d, and s must satisfy 0<s459,
$2d>0, w>0..

8.2.11.2.1 Floating-Point Input-Conversion

Let S be the character-string to be converted to the result X. The length of S
is w.

If w=0 or S is a string of all blanks, the result is a real, fixed, decimal 0
with precision 1.

If wA0 and S is not all blank, S must be described by:

{<blank>]...[+}|=]<decimal number>
({{el{+}-}ie}<decimal integer>l[<blank>]...

The string, S, is converted to a floating-point, decimal, real number, X, whose
mantissa, f, exponent, e, and precision, p, are determined as follows:

p is the number of digits in the <decimal number>.

f is the integer value of the <decimal number>, ignoring the decimal point,
if any. .

e is calculated as k-q where:
k i3 the value of the <decimal integer> or is zero.

q is: the: number of digits following the decimal point in S, if one
appears; or q is. the value-of d, if it is given; or q is zero.

The value of e must be: in the range -128<e<127.

The result is: X.

11/77 8=11 AG9&A:

Otherwise, the conversion condition occurs. The value of the onsource built-in
is S. The value of the onchar builtin is the leftmost character in 3 that does
not meet the syntax for floating-point input conversion.

Examples:
Value of S Format Result
:1.17°)] e(5,3) 0
1.3e7 e(5,3) : 1.3e+7
12345 e(5,3) 12.345e+0
-52+4 e(5) -52.0e+l
BBS¥Y e(5) 5.0e+0

8.2.11.2.2 Floating-Point Output Conversion

Let X be the value to be converted to the result string S. The length of § is
W

If s is omi..ed, let s be d+1. If d is omitted, let d be p=-1 and let s be p,
where p 1is the precision of X after conversion to a floating-point, decimal,
real number according to the rules given in paragraph 8.2.10.

The value of S is determined by one of the following cases:

If w=0, S is a null string.

If d<s and d£0 and X<0, the value of S is the value of X converted under control
of a <picture> of the form:

"(W=s5=T7)b(s=d)=9.v(d)9es999"

If d<s and d#0 and X>0, the value of S is the value of X converted under control
of a <picture> of the form:

"(We5=6)b(S=d=1)29.v(d)9es9y9g"

If d=0 and X<0, the value of S is the value of X converted under control of a
{picture> of the form:

"(W=s=6)b(s)=9ves999"

If d=0 and X>0, the value of S is the value of X converted under control of a
<picture> of the form: ’

"(W=S=-5)b(s=1)2z9ves9g9g"

If d=s and d#0 and X<0, the value of S is the value of X converted under control
of a <picture> of the form:

"(w=d=8)b=..v(d)9es999"
with the resulting ".,." replaced by "0.,".

If d=s and d#0 and X>0, the value of S is the vaiue of X converted under control
of a <picture> of the form:

"(w=d=7)b..v(dY9es999"™

with the resulting "..™ replaced by "Q0."..

M7 8-12 AGY94A

If the leading expression in any of the preceding <picture>s is negative, the
Size condition ocecurs.

The result is S.

Examples:
Value of X Format Result
7.5 e(11,3) ¥7 .500e+000
-7.5 e(11,3) -7 .500e+000
75 e(11,3) B7.500e+001
0 e(11,3) B0 .000e+000
.008 e(11,2,4) 880.00e-004

8.2.11.3 Complex Format

Syntax:
{complex format>::= c(<format part>[,<{format part>])

{format part>::= <picture format> (<fixed-point format)!
{floating-point format)

If only one <format part> is given, it is used to control the conversion of both
the real and imaginary parts of the complex number. If two <format part>s are
given, the first controls the conversion of the real part of the complex number
and the second controls the imaginary part of the complex number, The
conversions of the two parts are performed independently as described for real
numbers in this section.

If a <format part> is-a.<picturejformat>, the <picture> must be a <numeric
picture>, T

Note that an "i" does not appear in the character-string representations of
complex numbers processed: by a <complex format).

Examplgs:
Value Format Input Result
.1.X3.1 .74 e(f(3)) 3+21
-28BB1 e(f(3,1),£(3)) -.2+11
Value Format Output Result
S5+21 e(f(3)) EBSBB2
5.2-3.1i e(f(4,1),£(5,2)) ¥5.2-3.10

8.2.11.4 Character-String Format

Syntax:

{character-string format>::= al(<w>)]

{w>::= {expression>
Evaluatiom of <w> must. yield a: scalar arithmetic or string value that is
converted to. real binary integers. Let w be- the: converted value. If specified:
w must. be- nonnegative.
For input. conversion, w-must. be: given. No conversion 1is performed and the
result,1::aacharacter-stringzot‘length“u.

"mnITr 8-13 AG9UA:

For output conversion, let X be the value to be converted to the result string
S. It 1is converted to a character-string, S', according to the rules given in
section 8.2, If w is not given, the result is S'. If w is given, let n be the
length of §Ss'., If n<w, the result is S' with w-n blanks appended to its right.
If n>w, the stringsize condition occurs. If detection of the condition |is
disabled or if the <on unit> returns to the point where the condition was
detected, the rightmost n-w characters are removed from S' to form the result.

Examples:
Value Format Input Result
pBYY a(l) "B
B2.5 a(d4) "p2.5"
Value Format Output Result
wabe" a abe
"abot a(y) abch
nw a(4) 1311

8.2.11,5 Bit-string Format

Syntax:
<bit-string format>::= <radix factor>[(<w>)]
<radix factor>::= {bib1{b2ib3ibd}
{w>::= <expressiom>
Evaluation of <w> must yield a scalar arithmetic or string value that is

converted to real binary integers. Let w be the converted value. If specified,
W must be nonnegative.

§.2.11.5.1 Bit-string Input Conversion

For input conversion, w must be specified. Let S be the character-string of
length w that is to be converted. S must be described by the following:

(<blank>...l[<character>...][<blank>...]

The <{character>s in the above description must come from the <character>s in the
table in paragraph 2.6.2.1 corresponding to the specified <radix factor>. If S
does not satisfy this syntax and constraint, the conversion condition occurs.
Let S' be S with all of its leading and trailing blanks removed and let n be the
length of S°'.

Let m be 1 if the <radix factor> is "b", or the number in the <radix factor>
otherwise. If S' is a null character-string, it 1is converted to a null
bit-string, R; otherwise, it is converted to R, where R 1is a bit-string of
length m#*n. For k=1,2,...,n, bits k*m=-m+1,...,k*m are obtained from the table
in paragraph 2.6.2.1. If the kth character of S is invalid, the «c«onversion
condition occurs.

/77 8=14 AGY4x

Examples:

Value Format. Input Result
010 b(3) "G10"b

1.1} b(3) nnp

000 b(3) "000 "Dy

B1E b(3) "imp

407 b3(3) "100000111"p
eds b4 (3) "110011010101"p

8.2.11.5,2 Bit-string Qutput Conversion

For output conversion, w is optional. Let X be the value to be converted to the
resulting character-string S. X is converted to a bit-string, B, according to
the rules given .in paragraph 8.2. Let n be the length of B. Let m be the
number specified in the <radix factor> or 1 if no number was specified. Let
n'z=n., If n is not a multiple of m, let n' be the next higher multiple of m, and
extend B by appending n'-n zero bits to the right of B. Let Kz=n'/m. If w is
not specified, let w. be K.

B is converted to a character-string S of length w as follows. If B is a null
bit-string it is converted to a null character-string S; otherwise, it is
converted to S, where S is a»character-string of 1length K. For 1i=1,2,....,K,
bits i*mem+1,..,,i*m are converted to the ith character by using the table in
paragraph 2,.6.2.1.)

If w is greater thanm K, S is extended on the right with blanks until 7its length
is w.

If K is greater than W, the stringsize condition occurs. If the <on unit>
returns to the point where- the: condition was detected, the result is formed by
truncating‘the<rightmost‘K-w»characters of S.

Examples:
Value Format. Output Result
"00 "y " b ' 00
"1"h b(4) 1888
nep b(4) .1.3:1.]
"10101"p b3(3) 52¥%
"11111"b: bl (2) F8

8.2.11.6 Picture Format

Syntax:
{picture format>::= p"<picture>n

Fer input coaversion, the character-string to be converted by a <picture format)>
must be a valid string as defined in paragraph 8.2.12. If this constraint is
not satisfied, the conversion condition occurs. For valid strings, no actual
conversion occurs and the result of input conversion is the original
character-string.

"/7r 8=14.1 AG94A.

This page intentionally left blank.

177 AG94A

Note that for input conversion the result of the format controlled conversion is
considered a pictured value and is converted as such when it is assigned to the
list element.

For output conversion, let X be the value to be converted to the pictured string
S. X is converted to S as described in the next section.

8.2.12 Picture Controlled Conversion

The following sections describe the conversion that cccurs when a value is assigned
to a pictured variable or output through a <picture format> as editing. The
conversion that occurs when a pictured value is converted to an arithmetic value
is described as encoding.

The pictured character-string value described by a <picture> consists of n
characters, where n is the number of <{picture char>s in the <normal picture>
excluding any "v", "k", or <picture scale factor>, but including all <insertion
characterd>s.

The result of editing is a pictured character-string of length n whose value is
determined by the <picture>. The result of encoding is a decimal arithmetic
value whose type and precision are determined by the <picture>. If the encoded
value does not conform to the data type of the target, the encoded value is
converted to conform to the target.

The character-string value to be encoded must be a valid string. A valid strin
is one of the strings that could have been produced by editing values tErougg
the <picture>, except that the set of strings acceptable to the <mantissa field>
of a <floating-point picture> is the set of strings that could have been produced
by editing values through the <mantissa field> as if it were a {fixed=-point
picture>.

If a pictured variable or function value is declared with the <complex attribute>,
the encoding and editing operations are performed on the real and imaginary
parts of the complex values as if they were real numbers. The single <pictured>
is effectively a pair of identical <pictureds.

8.2.12.1 Syntax of Pictures

Syntax:

{picture>::= {[(<decimal integer))]<piéture'char)}...
{<picture scale factor>]

<picture char>::= aibleidielkirisivixiylzi$i9i+i=i.!,i/1%
<{picture scale factor>::= f([+|-]<decimal integer>)

This syntax describes all valid <pictured>s, but is too permissive in that it
2lso0 describes many invalid <picture>s. Inorder to describe only valid <pictured>s,
{picture>s must be translated into <normal picture>s, This translation is
accomplished by copying each <picture char> k times, where k is the value of the
parenthesized <{decimal integer> that immediately precedes the <picture chard>.
If no. such parenthesized <decimal integer> appears, the <picture .char> is not
repeated. If k=0, the <picture char> is remaved.

Example:
(5)9v(2)9 becomes 99999v99
(3)-9.(8)9 becomes ---9.9999
(0)-99 becomes 99

3/81 8-15 . AG94E

Normalized pictures must be described by the following syntax as amended by the
discussion of <insertion character>s that follows below:

Syntax:
<{normal pictured::= <{character picture>|<numeric picture>
<character picture>::z [9...1{alx}la!x!9]...

<numeric pictured>::= {<fixed-point pictured|
<{floating-point picture>}[<picture scale factor>]

<picture scale factor>::= f([+}|-]<decimal integer>)
{fixed-point pictured::= <fixed field>|<drifting field>

(fixed field>::s <digit positions>[s!+|-I1[$]!
{digit positions>[$I[s!+]=]1!
[si+{-1<digit positions>[$]!
[si+}]-1[$1<digit positions>!
[$1(si+i-1<digit positions>!

[$1<digit positions>{si+}-]!
<digit positions>($]l{cridb}!
($1<digit positions>{cridb}

<digit positionsd>::= <digits>{v({<digits>]]!
v<digits>|
2...0<digits>]1[v(<digits>]I}
{ZaeodV 24,4}
E...((digita)][v[(digits)]]l
LA L R

<drifting field>::= <drifting sign>($]!
{$1<drifting sign>!
<drifting dollar>(si+i=]!

[si+i=1<drifting dollar>!
<drifting dollar>{cridbl}

<drifting sign>::= <signs>[<digits>][v(<digits>]]}

SeeeV SeceldeeeV +eoaimeaa¥ =.,,
<drifting dollar>::= s's...tfdigits>][v[<disits>]]!3...v.S...
<digits>::= (9!yl}... ‘
<31gNS>::2 S S...i+ +esi= =,

<floating-point picture>::= <mantissa field>
{eik}<exponent field>

<mantissa fleld>::= [s}+!-]<digit positions>|<drifting sign>

<exponent fleld>::= [si+{-1{[91(919/(21[919iCz][219![z]1(z]z}
If a <picture> can be translated into a <character picture> by expanding all
repeated <picture char>s, or into a <numeric picture> by expanding all repeated
<picture char>s and removing all <insertion characterds, it is 2 valid {picture>;
otherwise, it is not valid and the program is in error.

<{insertion character>::= .},}/!b
Although the presence of <insertion character>s is described informally and not
by syntax rules, they are part of the {fixed-point picture> or <floating-point

picture> and occupy positions in the pictured character-string value described
by the <picture>.

8=16 AGOH

8.2.12.2 Character Picture Conversion

A <character picture> can contain only "g™,6 ma® or "x® <(picture char>s and it
must contain at least one "a" or "x",

8.2.12.2.1 Character Picture Editing

Let X be the value to be edited into the pictured character-string P.

X is converted to a character-string value X' according to the rules for the
conversion to character-string given in paragraph 8.2. The value of X' is then
edited into the pictured character-string as follows:

Let n be the length of P and let m be the length of X'. If m<n, X' is extended
on the right by n-m blanks. If m>n, the stringsize condition occurs. If
detection of the condition is disabled or if the <on unit> returns control to
the point where the condition was detected, the last m-n characters of X' are
ignored.

The value of P is the leftmost n characters of the extended value of X'.

For k=1,2,...,n, the kth character of X' is checked for conformance to the kth
{picture char> and is assigned to the kth character position of P. Only the
characters "0","1",.,.,"9" or blank conform to a "g" <picture char)>, Only the
characters ™"a","b",...,"z" or "A","B",...,"Z" or blank conform to an "a"
<picture char>. Any character conforms to an "x" <picture char>.

If any character of X' does not conform, the conversion condition oeccurs. The
value of P is not defined when this condition ocecurs,

Examples:
Value of X° Picture Result
abe aaa abe
123 x99 123
1e2 x99 conversion

condition

8.2.12.2.2 Character Picture Encoding

The pictured character-string value is converted to an arithmetic value
according to the rules for character-string to arithmetic conversion given in
paragraph 8.2.3.

8.2.12.3 Fixed-Point Picture Conversion

A <fixed-point picture> cannot contain a "k, "elt, Mah op nxm <picture chard.

There are two kinds of <fixed-point picture>s, <fixed field> pictures and
{drifting field> pictures.

8=17 AG94

8.2.12.3.1 Fixed-Point Picture Editing

Let X be the value to be edited into the pictured character-string, -P.

X is converted to a fixed-point, decimal, real, value, X', of precision (n,m),
where (n,m) is determined according to the rules for {fixed-point picture>
encoding given in paragraph 8.2.12.3.2.

If this precision is insufficient to retain all digits to the 1left of the
decimal point, the size condition occurs. If fractional digits are lost, they
are truncated.

The value of X' is converted to a character-string by the following:

Let D be the string of n decimal digits that represents the absolute value
of X'.

Let P be a copy of the <normal picture> with the "v" and the <picture scale
factor>, if any, removed. Let N be the number of <picture char>s in P, let
j be 1, and let zero suppression be off.

For k=1,2,...,N, select the kth <picture char> from P and perform the
action indicated for this <picture char>. 1If the kth <picture char> in the
original <normal picture> is a "v" and zero suppression is on and X'#0,
turn zero suppression off before performing the action indicated for the
kth <picture char> of P.

s If X'<0, replace the "s" with a "-v; otherwise, replace it with a "+",
If additional "s" characters remain, replace each of them with a "z"
and turn zero suppression on,

+ If X'<0, replace the "+" with a blank; otherwise, it remains
unchanged. If additional "+" characters remain, replace each of them
with a "z" and turn zero suppression on.

- If X'<0, the "-" is unchanged; otherwise, replace it with a blank. If
additional "-" characters remain, replace each of them with a "z" and
turn zero suppression on.

$ Leave this character unchanged. If additional "$" characters remain,
replace each of them with a "z" and turn zero suppression on.

9 Replace the "9" by the jth digit of D and turn zero suppression off.
Let j be j+1.

y Turn zero suppression off. If the jth digit of D is a zero, replace
the "y" by a blank; otherwise, replace the "y" by the jth digit of D.
Let j be j+1.

z If this is the first "z" and it occurs to the left of the "v" in the
original <normal picture>, turn zero suppression on. If zero
suppression is on and the jth digit of D is a zero, replace the "z" by
a blank; otherwise, turn zero suppression off and replace the "z" by
the jth digit of D. Let j be j+1.

* If this is the first "®*" and it occurs to the left of the "v" in the
original <normal picture>, turn zerc suppression on. If zero
suppression is on and the jth digit of D is a zero, leave the "#n
unchanged; otherwise, turn zero suppression off and replace the "#" by
the jth digit of D. Let j be j+1.

c The: next <picture char)> must be an "r". If X'<0, leave both the "c”
and the "r" unchanged; otherwise, replace them by two blanks.

d Tﬁe‘next {picture char> must be a "b", If X'<0, leave Dboth the %d*
and the "b" unchanged; otherwise, replace them by two blanks.

"7 8-18 AG94A

y If zero suppression is on and the previous character in P is now an
"#"v, replace the "," by an "¥'", If zero suppression is on and the
previous character in P is not an "¥" preplace the "," by a blank. If
Zero suppression is off, leave the "," unchanged.

/ Process like a comma.

Process like a comma.

b Process like a comma, except when zero suppression is off replace the
' "b" by a blank.

Before obtaining the result, the longest subfield contained within a <drifting
sign> or <drifting dollar> satisfying this syntax:

{+i-is}<blank>...
has its first and last characters interchanged.

If no digits were edited into P, set P to all blanks. The result is the
character-string P.

Examples:
Value of X Picture Result
5.2 99v99 0520
5.2 99.99 00.0%
5.2 9.9.99 0.0.05
5.2 ' sssv99 B+520
5.2 s3sv.99 B+5.20.
5.2 ~==v .99 BB5.20
5.2 +++V .99 B+5.20
-5.2 ss8sv.99 B=5.20
-5.2 ~-—-V.99 B-5.20
-5.2 eV GO B¥B5.20
-5.2 $$$v.99%¢cr B6$5.20cr
5.2 $$$v.99%r BB$S.2088
5.2 . Z22ZVZZ BB520
.01 ZZZVZIZ BBBO1
0 , ZZZVZZ .1.1.3.9°3
1234 2,222V 1,234
900 Z2,22ZV BB900

8.2.12.3.2 Fixed-Pojnt Picture Encoding

Let X be the pictured character-string value to be encoded and let (n,m) be the
precision of the encoded value, Y, where (n,m) are determined as follows:

If the <fixed-point picture> is a <fixed field>, let n be the number of
<picture char>s. in the <digit positions> excluding any <insertion
character>s or the "v". Let m be the number of <picture char>s in the
<digit positions> following the ®v® and excluding any <insertion
character>s. If the "v"™ is omitted, m=0.

If the <fixed-point picture> is a <drifting field>, let n be the number of
<picture char>s in the <drifting sign> or <drifting dollar> excluding: the
first sign of a <drifting sign>, the first "$"™ of a <drifting dollar>, any
<{insertion char>s, and the "v"., Let m be the number of <picture char>s in
the <ddrifting sign> or <drifting dollar> following the "v" and excluding
any <insertion character>s. If the "v"™ is omitted, m=0.

The resulting values of n and m must satisfy The relationship m<n<59 or the
program: is in error. .

8=19 ' AG94

If the <picture> has a <picture scale factor>, m is changed to m-q, where g
is the value of the <picture scale factor>. The final value of m must be
in the range -128<m<127.

Let D be the string of decimal digits contained within X. If D is a null
string, let D' be zero; otherwise, let D' be the decimal integer represented by
D. To form the result, Y, let the absolute value of Y be D' and let the sign of
Y be minus if X contains a "-", "er" or "db"; otherwise, the sign of Y is plus.
The data type of Y is fixed-point, real decimal, of precision (n,m).

The value of Y is the result of encoding X.

Examples:
Value of X Picture Result
12,345 zZ2,22Z 12345
123456 22,222 program in error
BBB900 22,222 900
BB5 .00 ZZZV.Z2 5.00
B¥S5 .00 22z.22 500
B-5.00 sssv.99 -5.00
B+5.00 sssv.99 5.00
B-5.00 -==v .99 -5.00 -
B+5.00 -=-=v.99 program in error
b+5.00 +++v,99 - 5.00
p-5.00 +++Vv .99 program in error
bB$s5.2 $3$$9v.9 5.2
BBEBS .2 $339v.9 program in error
12.23cr zzv.99cr -12.23
12.2368 zzv.99cr 12.23

8.2.12.4 Floating-Point Picture.Conversion

A <floating-point picture> consists of two subfields, one describing the
mantissa and one describing the exponent. A <floating-point picture> cannot
contain an "a" or "x" <picture char>.

8.2.12.4.1 Floating-Point Picture Editing

Let X be the value to be edited into the pictured character-string P.

-X 1s converted to a floating-point, decimal, real value, X' of precision (n),
where (n) 1is determined according to the rules for {floating-point picture>
encoding given in paragraph 8.2.12.4.2.

If a <{picture scale factor> is specified for P, the value of X' is changed to
X'#10%*_k, where k is the value of the <picture scale factor>.

If digits are lost by this conversion, the least significant remaining digit is
rounded if it is followed by a digit >5.

The absolute value of the mantissa of X' is represented as a fixed-point,
decimal, real number, D, of precision(n,n) adjusted to 1lie in the range
(1/10)<f<1, or is zero. The exponent is adjusted to reflect that fact that the
mantissa is adjusted. The exponent is zero if X' is zero.

7/78 ' 8-20 AG94B

Consider the <mantissa field> to be a {fixed-point picture> and the mantissa of
X' to be a fixed-point, decimal, real value of precision (n,m), where n and m
are given by the rules for <fixed-point picture> encoding given in paragraph
8.2.12.3.2. Edit the mantissa of X' into a copy of the <mantissa field> as if
it were a <fixed-point picture>. Let M be the result of this edit operation.

Adjust the expcnent of X' to reflect the location of the "v" or implied "v"
within the original <mantissa field>, and then convert it to a fixed-point,
decimal, real number of precision(3,0). Edit the adjusted and converted
exponent into a copy of the <exponent field> of the {floating-point picture> as
if the <exponent field> were a <fixed-point picture>. Let E be the result of
this edit operation.

If the <floating-point. picture> contained a "k", the result is M|!E. If the
{floating-point picture> contained an "e" and E is all blanks, the result is
Mii"B"1E. If the <floating-point picture> contained an "e" and E is not all
blanks, the result is M||"e"|i{E. .

Examples:

Value of X' Picture Result
5.2 9v.99ks99 5.20+00
5.2 9v.99k-99 5.20600
5.2 9v.99k+99 . 5.20+00
5.2 9v.99es99 5.20e+00
5.2 9v.99e9 5.20e0
5.2 s9v.99e9 -5.20e0
-5.2 +9v.99e9 ¥5.20e0
-5.2 -9v.99e9 -5.20e0
-5.2 -==v.9es9 -52.0e~=1
1234 .5 9,999v.e9 1,235.e0
-5.2 ———V . ===2599 -52.00Qe-01

8.2.12.4.2 Floating-Point Picture Encoding

Let X be the pictured character-string value to be encoded, and let (n) be the
precision of the encoded value, Y', where (n).is determined as follows:

If the <mantissa field> 1is a <drifting sign>, n is the number of {picture
char>s in the <drifting sign>, excluding the "v", the first sign character,
and any <insertion character>s.

If the <mantissa field> 1is not a <drifting sign>, n is the number of
{picture char>s in the <digit positions>, excluding the "v" and any
{insertion character>s.

Let m be the number of <picture char>s in the <mantissa field> following
the "v", but excluding any <insertion character>s.

The resulting values of n and m must satisfy the relationship m<n<59 or the
program is in error.)

Let D be the string of decimal digits contained in X. If D is a null string,
let D' be zero; otherwise, let D' be the absolute value of the decimal integer
represented by D. To forr the result, Y, let Y be a real, decimal, fixed-point
value of precision (n,m) whose absolute value is given by D' and whose sign is
minus if the first N characters of X contain a "-™ and is otherwise plus.

Let I be the value derived by encoding the <exponent field> of X as if it were a
{fixed-point picture>. Let I' be I+s, where s is the value of the {picture
scale factor>, if there is one, or is 1.

The result, Y', is a floating-point, decimal, real, value of precision (n) whose
value is Y®Q*#T*, .

7/78 8-21 AG94B

Examples:

7/78

Value of X

1,234.56+0
¥B900.00+4
B=-1.234e00
BUBBBBY

Picture

9,999 .v99ks9
z,22Z.v99ks9
-=9.v999e99

9v9999k9

8-22

Result

1234 .56e0
900.00ed
-1.234e0

program in error

AG94B

SECTION 9

PROMOTION OF AGGREGATE TYPES

As defined in paragraph 4.2, an aggregate type 1is the dimensionality,

array-extents and structuring of a set of scalar values. A value conforms to an

aggregate type if it has the dimensionality, array-extents and structuring

specified by the aggregate type. When a value does not conform to the aggregate

type required by the context in which the value appears, it is promoted to the

required aggregate type. If promotion from the original aggregate type to the
required aggregate type is not defined, the program is in error.

9.1 Contexts That Force Promotion

1. The value of the <expression> of an <assignment statement> is promoted to
conform to the aggregate type of the {target> of the <assignment
statement>.

2. The value of an argument'of a <function reference> or <call statement)> 1is
promoted to conform to the aggregate type of the corresponding <{parameter
descriptor> of the entry declaration.

3. Operands of infix operators are promoted to the higher of their two
aggregate types.. .

4. The value of a <return value) is promoted to conform to the aggregate type
specified by the <returns attributed of the <entry statement> or <procedure
statement> whose execution created the current block activation.

5. The arguments of certain built-in functions are promoted to the highest
aggregate type of all the given arguments. Refer to Section 13 to see
which built-in functions force promotion, and which arguments are promoted.

6. The <expression>s of a <substr pseudo> are promoted to the highest common
aggregate type of the operands of the <substr pseudo).

All of these contexts supply the dimensionality and structuring of the resultant
aggregate type. All contexts, except the <argument list> context and the
<{return value> context, supply the array-extents of the result. If a <parameter
descriptor> or a <returns descriptor> specifies asterisk array-extents, the
resultant aggregate has an array-extent of one in each dimension; otherwise,
the constant array-extents of the {parameter descriptor> or <returns descriptor>
supply the array-extents of the result.

Example:
declare f entry(dimension(¥*) fixed);
call £(5);

In this example, the scalar § is promoted to a one-dimensional array of one
element whose value is 5.

9-1 AG94

9.2 Types of Promotion

The language defines promotion from:

scalar to array

scalar to structure

scalar to array of structures
structure to array of structures

The word "promotion™ implies a ranking of aggregate types, and the promotion of
the operands of infix operators utilizes this ranking. The aggregate types are
ranked as follows:

array of structures " highest
array or structure equal
scalar lowest

9.3 Promotion e

1. Scalars become arrays by forming an array whose elements each have the
scalar value.

2. Scalars become structures by forming a structure whose members each have
the scalar value.

3. Scalars become arrays of structures by forming an array of structures whose
scalar components each have the scalar value.

4, Structures become arrays of structures by forming an array of structures
whose array elements each have the value of the structure.

An array cannot be promoted to a scalar, to an array of different dimensionality
or extent, nor can it be promoted to a structure or to an array of structures.
However, since the <bound>s of an array valued <expression> are always
normalized, arrays of identical extents and dimensionality, but with differing
<bound>s can be used in any of the contexts that force promotion without causing
promotion to occur. Refer to paragraph 4.2 for a discussion of array <bound>s
and neormalization.

Example:
declare A(5),B{(4),C(2,2);
In this example, there are no valid promotions between A, B and C.

A structure cannot be promoted to a scalar, to a structure of different shape,
nor can it be promoted to an array. It can be promoted to an array of
structures. However, since <level)>s are normalized, structures of identical
shape, but with differing <level>s can be used in any of the contexts that force
promotion without causing promotion to occur. Refer to paragraph 4.2 and
paragraph 5.2.1.3 for a discussion of the normalization of <levells.

Example:
declare 1 S,2 A,2 B;
declare 1 T,2 X,3 Y,3 Z;
In this example, there are no valid promotions between T and S, but X and ? EZV:

identical structuring and consequently have identical aggregate type.
adjusted <level>s are equal.)

Phain
- AT de

9-2 AG94

The fact that two aggregates may map into equivalent patterns of values in
storage has no affect on the rules of aggregate promotion.

Example:
declare A(3);
declare 1 8,2 X,2 Y,2 Z;
In some implementations, A and S may map into storage in the same manner, but

their aggregate types are not compatible and cannot be promoted to a common
aggregate type.

9-3 AG94

SECTION 10

CONDITIONS, SIGNALS AND ON-UNITS

10.1 Conditions and Condition Names

A condition 1is a state of the executing program. A gconditjion name is a name
that identifies a condition. For example, division by zero 1is a condition
identified by the condition name "zerodivide™. The language defines a set of
condition names each of which identifies a specific condition which can be
detected during program execution. The complete list of PL/I conditions is
given in paragraph 10.4.

10.2 Condition Prefixes

The <condition prefix> is an optimization/debugging feature that allows the
programmer to disable or enable the detection of some of the PL/I conditions.

Syntax: SR
<condition prefix>::= (<prefix name>(,<prefix name>]...):
{prefix named>::= <disabled condition>}<enabled condition>

<{enabled. condition>::= {conversioniconv}| {fixedoverflow!fofl}!
{overflowiofl}isize! {stringrange!strg}!{stringsize!strz}!
{subscriptrangeisubrg}| {underflowiufl}!{zerodivide!zdiv}

<disabled condition>::= {noconversion{noconv}|{nofixedoverflow!
nofofl}i {nooverflowinoofl}inosize! {nostringrange!~ostrg}!
{nostringsizeinostrz}! {nosubscriptrangei!nosubrg}i
{nounderflowinoufl}| {nozerodivide !nozdiv}

A <condition prefix> 1is in error if it contains a <disabled condition)> and an
<enabled condition> that identify the same condition.

The region of an <external procedured> affected by a <prefix name> is known as
the scope of the <prefix name>. The scope of a <{prefix name> specified in a
<condition prefix> attached to a <begin statement> or <{procedure statementd> is
all <statement>s contained in the <block> defined by the {begin statement> or
{procedure statement)>, except <statement>s or <block>s that lie within the scope
of another <prefix name> identifying the same condition and contained in the
same <Slock>.

The scope of a <prefix named specified in a <condition prefix> attached to a
{statezent> other than a <begin statement> or <procedure statement> is
restricted to that <statement> and does not include any <block>s or <statement>s
that are part of an <if statement)> or <on statemen*>. The scope of a <{prefix
name> specified in a <condition prefix> attached to a <do statement> is
restricted to the <do siatement> and does not. include the <group> headed by the
<do statement>.

A <condttion prefix> attached to a <formhat statement> controls the detection of
conditions: resulting from the evaluation of the <format specification list>, but

10=-1 : AG9Y4

has no effect on the detection of conditions resulting from the execution of the
<get statement> or <put statement>. :

A <condition prefix> cannot be attached to a <declare statement> or <default
statement>. Any <reference>s or <expression>s in a <declare statement)> or
{default statement> are part of the declarations of one or more names. When a
name is referenced during the execution of a <statement>, the <condition prefix>
that applies to that <statement> is used to control the detection of conditions
during evaluation of <reference>s and <expression>s in the declaration of the
name.

The detection of all PL/I conditions is enabled unless it has been explicitly
disabled. The detection of a condition 1is said to be disabled for all
{statement>s that 1lie within the scope of a <prefix name> that identifies the
condition with a <disabled condition> name.

If a condition occurs during the execution of a <statement> within the scope of
a <condition prefix> that has disabled detection of the condition, the program
is in error and the results of further execution are undefined.

The imaginary outer <block> that contains an <external procedure> has a
{condition prefix> of the form:
(nosize,nostringsize,nostringrange,nosubscriptrange):

/7

This westablishes a default <condition prefix> that applies to the entire
{external procedure>.

10.3 Signals and On-units

When a condition is detected the condition is signalled. A signal causes a
<block> activation of the <on unit> most recently established for the condition.
The execution of a <signal statement> also signals a condition and has the same
effect on the flow of control as the detection of 3 condition. The execution of
a <signal statement> affects the values of some condition built-in functions as
described in paragraph 12.27.

An <on unit> is a <begin ©block> or <independent statement> executed when a-
condition is signalled. An <on unit)> is established by the execution of an <on
statement> and is reverted by the execution of a <revert statementd or by
termination of the block activation that established it.

Each block activation is capable of establishing a single <on unit> for each
condition. If a block activation attempts to establish a second <om unit)> for a
given condition, the second replaces the first. Each block activation is
capable of reverting only those <on wunitd>s that it established. If a bloeck
activation attempts to revert an <on unit> whieh it did not establish, the
{revert statement> behaves like a <null statement>. Refer to Section 12 for the
syntax and semantics of the <on statement>, <signal statement>, and <revert
statement>,

Example:
L1: on zerodivide go to A;

begin;
L2: on zerodivide go to B;

L3: on zerodivide go to C;

revert zerodivide;

end;

7/79 _ _ 10-2 AG94C

Statement L1 establishes an <on unit> of "go to A" for the zerodivide condition.
Statement L2 establishes a new <on unit> of "go to B" for the same condition,
and because L2 is part of a different block activation, its <on unit> does not
replace that established by L1. It is effectively stacked on top of the <on
unit> established by L1. Statement L3 replaces the <on unit)> established by L2
because L2 and L3 are <statement>s in the same block activation. The <revert
-statement> reverts the <on unit> established by L3 and causes the <on unit)>
established by L1 to be the current <on unit> for the condition.

If no <on unit> has been established for a condition and the condition is signalled,
a default <on unit> is invoked which performs the default action described for
that condition in paragraph 10.4. A default <on unit) is explicitly established
by an <on statement> of the form:

on <{condition list> system;

An <on unit> is invoked as if it were a {procedure>. When control reaches the
end of the <on unit> it returns to the point where the condition was detected.

10.3.1 Restrictions

The program is in error and the results of continued execution are undefined if
an <on unit> invoked for any of the following conditions returns to the point
where the condition was detected.

area (if caused by assignment)

error

fixedoverflow

overflow.

sSize

storage (if caused by stack overflow)
stringrange)

subscriptrange

zerodivide

If a condition is signalled during evaluation of an <{expression>, but not during
execution of an irreducible function invoked by the <expression>, and the responding
<on unit> returns to the point where the condition was signalled, then the <on
unit> must not. have allocated, freed, or assigned a value to any generation of
storage known at the point-where the condition was signalled.

This effectively means that conditions are considered to be unexpected side
effects of <expression> evaluation and their <on unitd>s cannot change the values
of variables being used by the interrupted <block> unless the <on unit> executes
a {goto statement> to return to the interrupted <blockd>.

An <on unit)> invoked as a result of a condition detected during evaluation of a
{statement> cannot access the value of a variable whose value is changed by the
execution of the <statement>.

Example:
on zerodivide begin;
X = A;
go to trouble;
end;

A = B/C;

The value of A is not defined upon entry to the <on unit> and, therefore, cannot
be accessed by the <on unit>, Programs which access such values are in error

T7/78 10-3 AG94B

and the results of continued execution are undefined. This example would be
valid if it were rewritten as follows:

on zerodivide begin;
A = X;
g0 to trouble;
end;

A = B/C;

This example is now valid because the <on unit) does not access the value of A;
it only accesses the generation of storage of A.

10.4 PL/I Conditions

In the following discussion, a <reference) is understood to be a <reference> to
a file value. Refer to Section 11 for a description of the relationship between
file values, file-state blocks, and data sets.

In the following discussion, error output is understood to be the Multiecs
error_output I/0 switch.

Although the description of each condition states when the condition occurs, the
following conditions may oceur anytime during execution of the program:

underflow
overflow
fixedoverflow
zerodivide
size
stringsize
storage

area

error

These conditions occur when the compiled code or any of its supporting subroutines
exceed one or more of their limitations or when they detect an error. Execution
"of a valid program does not normally cause these unexpected conditions to occur.

10.4.1 Area Condition

Syntax:
{area condition name>::= area

This condition occurs when an <allocate statement> attempts to allocate a generation
of a based variable in an area whose size is insufficient to contain the generation,
or when an <assignment statement) assigns an area to an area whose size is
insufficient to contain the assigned area. If an <on unit> returns to the point
where the condition was detected and the condition was signalled by the execution
of an <assignment statement>, the program is in error., If the condition was
signalled by the execution of an <allocate Statement>, the alloeation is retried
including reevaluation of the <in option> of the <allocation>. Unless the <on
unit> has freed sufficient storage in the area or caused the value of the <in
option> to change to an area that has sufficient storage, the condition will
occur again.

The default <on unit> writes a comment on error_output and signals the error
condition.

3/87 10=4 AGOHYE

10.4.2 Conversion Condition

Syntax:
<conversion condition name>::= conversion!conv

This condition occurs when an invalid character-string or character-pictured
value is converted to an arithmetic or bit-string value. Refer to Section 8 for
a discussion of character-string conversion.

Just before the condition 1is signalled, the current values of the onsource and
onchar built-in functions are pushed down and the value being converted is
assigned to "onsource®. The leftmost character for which the conversion faiied
is assigned to "onchar". If the conversion is being performed by stream
input/output, the current value of the onfile built-in function is also pushed
down and the current file name is assigned to "onfile"™., Refer to Seetion 11 and
paragraph 13.5.

If an <on unit> returns to the point where the condition was detected, the
conversion is retried wusing the value of the current generation of "onsource'.
Unless the <on unit> has assigned a new value to the "onsource!" or "onchar"
pseudo-variable, the condition will occur again.

The default <on unit> writes a comment on error_output and signals the error
condition.. .

10.4.3 Endfile Condition

Syntax:

<endfile condition-name>::= endfile(<reference>)
This condition occurs when a <get statement> or <read statement> attempts to
read past the end of the data set attached to the file-state block identified by
the file value of the <reference>.

Just before the condition is signalled, the current value of the onfile built-in
function is pushed down and the current file name is assigned to "onfile". If
the file-state block identified by the file value of the <reference> has the
<keyed attribute>, the current value of the onkey built-in function is also
pushed down and the current key value is assigned to "onkey". Refer to Section
11 and paragraph 13.5.

Repeated attempts to read past the end of the data set cause the condition to be
signalled for each attempt. If an <on unit> returns to the point where the
condition was detected, control returns to the <statement> following the <get
statement)> or <read statement>.

The default <on unit> writes a comment on error_output and signals the error
condition.

10.4.4 Endgage'Condition

Syntax:
<endpage condition named>::= endpage(<reference>)

Let linenumber and pagesize be control values of the file-state block identified
by the value of the <reference.

T/78 10=5 AG94B

This condition ocecurs when a {put statement> places a linemark into the data
stream and the newly updated linenumber equals the pagesize+1.

If the condition occurred as the result of an attempt to write data, then on
return from the <on unit>, the data is written. If the condition occurred
because of the evaluation of a <line option>, <line format>, <skip option>, or
{skip format>, then on return from the <on unit>, the format or option is
ignored.

Just before the condition is signalled, the current value of the onfile built-in
function 1is pushed down and the current file name 1is assigned to "onfile".
Refer to Section 11 and paragraph 13.5.4.

When endpage is signalled, the linenumber is one greater than the pagesize.
During the execution of the <on unit)> or after return from the <on unit> without
a <{page option> or <page format)> having been evaluated, the Llinenumber may
increase 1indefinitely. However, evaluation of a <line option> or a <line
format> that would have caused the endpage condition does not cause the
condition, but instead writes a pagemark into the output stream.

The default <on unit> places a pagemark into the data stream, resets the
linenumber to 1, and returns to the point where the condition was detected.

10.4.5 Error Condition

Syntax:
{error condition name>::z error

This condition is signalled by the default <on unit>s for several conditions.
It is also signalled by the mathematical built-in functions as described in
paragraph 13.3 and by the exponentiate operator as described in Section 7.

If an <on wunit> attempts to return to the point where the condition was
signalled, the program is in error and the results of continued execution are
undefined.

The default <on unit> writes a comment on error_output and returns to the
Multies command processor. If the start command is typed on the console, then
control returns to the point where the condition was signalled, but the program
is in error and the effects of continued execution are undefined.

10:4.6 Finish Condition

Syntax:
<finish condition name>:: = finish

This condition occurs when the process or run unit has attempted to terminate.

The default on-unit returns to the point where the condition was detected.
If process or run unit termination results from partial destruction of the

process or run unit, or exhaustion of process resources, the signal may or may
not occur and the correct execution of the <on-unit> may or may not occur.

T/78 10-6 : AG94B

10.4.7 Fixedoverflow Condition

Syntax:
{fixedoverflow condition name)::= fixedoverflow! fofl

This condition occurs when the result of a binary fixed-point computation
exceeds 71 binary digits. If an <on unit> returns to the pein where the
condition was detected, the program is in error and the results of continued
execution are undefined.

The default <on unit)> writes a comment on error_output and signals the error
condition.

10.4.8 Key Condition

Syntax:
<key condition name>::= key(<reference>)

This condition occurs when a <key option> specifies a key value that does not
identify any record in the data set attached to the file-state block identified
by the by the file value of the <reference>. It also occurs when a <keyfrom
option> specifies a key value that identifies a record that already exits in the
data set.

Just before the condition is signalled, the currentrecord and nextrecord values
of the file-state block are set.-to undefined values, and the current values of
the "onfile™ and "onkey" built-in functions are pushed down and the current file
name is assigned to "onfile"™ and the current key value is assigned to ‘"onkey".
Refer to-Section 11 and paragraph 13.5.

If an <on unit> returns to the point where the condition was detected, control

returns to the <statement> following the <statement)> that caused the condition
to occur.

The default <on unit> writes a comment on error_output and signals the error
condition.

10.4.9 Name Condition

Syntax:
<{name condition named)::= name{<reference>)

This condition occurs when a stream data set 1is being processed by a <get
statement> containing a <get datad. It occurs if the stream contains a <basic
reference> that does not identify a variable whose scope of declaration includes
the <get statement>, or if the stream contains: a <basic reference)> that
identifies a variable that is not identified by a <get data ref> specified by
the <get data>.

Just before the condition is signalled, the current value of the "onfield™ and
"onfile"™ built-in functions are pushed down and the current file name is
assigned to "onfile". The character-string extracted from the data stream by
the <get statement> is assigned to the "onfield" built-in function. Refer to
paragraphs 12.14 and 13.5.

If an <om unit> returns to the point where the condition was detected,
processing continues with the next input field in the stream.

10-T AG94

The default <on unit> writes a comment on error_output and returns to the point
where the condition was detected.

10.4,10 Qverflow Condition

Syntax:
<overflow condition name>::= overflow!ofl

This condition occurs when the result of a floating-point computation has an
exponent that exceeds 127. If an <on unitd> returns to the pecint where the
condition was detected, the program is in error and the results of continued
execution are undefined.

The default <on unit> writes a comment on error_output and signals the error
condition.

10.4.11 d_Conditi

Syntax:
{record condition name>::= record(<reference)>)

This condition occurs when a <read statement)> reads a record that is not equal
to the size of the variable specified by the <into option>.

Just before the condition is signalled, the current value of the "onfile"
built-in function is pushed down and the current file name is assigned to
"onfile™. If the file-state block identified by the file value of the
<{reference> has the <keyed attribute> the current value of the "onkey"™ built-in
funetion is also pushed down and the current key value is assigned tc "onlkey".

Refer to Section 11 and paragraph 13.5.

If an <on unit> returns to the point where the condition was detected, execution
continues as described in paragraph 12.23.

The program is in error and the results of continued execution are undefined
unless the variable is a valid left part of the record, or the record is a valid
left part of the variable. In the former case, excess data in the record is not
input. In the later case, only the left part of the variable receives a value.
A variable or record is a valid left part of another variable or record if and
only if their generations of storage conform to the rules given in paragraph
4.3.3.2 for the sharing of storage by based variables.

The default <on unit> writes a comment on error_output and signals the error
condition.

10.4.12 Size Condition

Syntax:

{size condition named>::= size _
This condition occurs when a value is converted to a fixed-point target value,
and the target's precision and scale factor does not provide sufficient digits
to the left of the decimal or binary point to represent the integral digits of
the converted value.
The size condition also occurs when the result of a decimal fixed-point
computation exceeds 59 decimal digits.

10-8 AG9Y

The condition also occurs during format controlled output conversion when the
output field described by a <fixed-point format> or a <floating-point format> is
insufficient to hold the converted value. Refer to paragraphs 8.2.11.1.2 and
g§.2.11.2.2. '

The condition also occurs when a negative value is assigned to a target whose
declaration contains the <unsigned attribute>.

If an <on wunit> returns to the point where this condition was detected, the
program is in error and the results of continued execution are undefined.

The default <on unit> writes a comment on error_output and signals the error
condition.

10.4,13 3torage Condition

Syntax:
{storage condition name>::=z storage

This condition occurs when the Multics stack segment is about to overflow, or
when the "system storage™ used to allocate controlled and based variables is
full. -

If the Multics stack segment is about to overflow, the Multies "stack" condition
is signalled. Its default <on unit> signals the PL/I storage condition. 1In
this case, the <on unit> for the storage condition cannot require more than four
pages of stack storage. If the <on wunit> returns to the point where the
condition was detected, the program is in error and the results of continued
execution are undefined. Refer to the Multies Programmers' Manual.

If the condition was signalled-because "system storage" was full and the <on
unit> returns to the point where the condition was detected, the allccation is

retried. Unless the <on unit> has freed sufficient storage in "system storage”,
the condition will occur again.

The default <on unit> writes a comment on error output and signals the error
condition.

10.4.14 Stringrange Condition

Syntax:
<stringrange condition name>::z stringrangeistrg

This condition occurs when the substr built-in funetion or <substr pseudo>
specify a substring that is not completely contained in the string value that
appears as the first argument of the substr reference. If an <on unit> returns
to the point where the condition was detected, the program is in error and the
results of continued execution are undefined. .

The default <on unit> writes a comment on error_output and signals the error
condition.

10.4.15 Stringsize Condition

Syntax:

{stringsize condition name>::= stringsizel|strz

T/78 10-9. AG94B

This condition occurs when a value is converted to a string target value and the
target's generation of storage is insufficient to contain the string value. 1If
an <on unit> returns to the point where the condition was detected, the string
value 1is assigned to the target from left-to-right until the target is full and
any excess characters or bits are truncated.

The value of the target is undefined at the time the condition is signalled.

The default <on unit)> returns to the point where the condition was detected.

10.4.16 Subscriptrange Condition

Syntax:
<{subscriptrange condition name>::= subscriptrange)subrg

This condition occurs when the value of a <subscript> exceeds the <boundd>s of
the dimension to which it applies. If an <on unit> returns to the point where
the condition was detected, the program is in error and the results of continued
execution are undefined.

The default <on unit> writes a comment on error_outpﬁt and signals the error
condition.

10.4.17 TIransmit Conditiog

Syntax:
{transmit condition named>::= transmit(<reference)

This condition occurs when data cannot be reliably transmitted between the data
set attached to the file-state block identified by the file value of the
{reference> and one or more of the values specified in a <get statement>, <put
statement>, <{read statement)>, <write statement), <rewrite statement> or <locate
statement>.

The value of any datum whose transmission caused the condition is undefined.

Just before the condition is signalled, the current value of the "onfile"
built-in function is pushed down and the current file name 1is assigned to
"onfile™. If the file-state block identified by the file value of the
{reference> has the <keyed attribute> the current value of the "onkey" built-in
function is also pushed down and the current key value is assigned to "onkey".
Refer to Section 11 and paragraph 13.5.

If an <on unitd> returns to the point where the condition was detected, control
returns. to the <statement> following the <statement> that caused the condition
to occur.

The default <on unit> writes a comment on error_output and signals the error
eondition.

10.4.18 Undefinedfile Condition

Syntax:

undefinedfile condition name>::= {undefinedfilelundf}
(<reference>)

10-10 AG9L4

This condition occurs when an attempt to open a file-state block is
unsuccessful. If an <on unit> returns to the point where the condition was
detected and the <statement)> being executed is an <open statement>, execution
continues with the evaluation of the next <opening> of the <open statement>. If
an <on unit> returns control to the point where the condition was detected and
the <statement> being executed is not an <open statement>, the file must have
been opened by the <on unit>. If it is not yet open, the error condition is
signalled. Just before the condition is signalled, the current value of the
"onfile™ built-in function is pushed down and the current file name is assigned
to "omnfile®,

The default <on unit> writes a comment on error_output and signals the error
condition. -

10.4.19 Underflow Condition

Syntax:
<underflow condition name>::= underflow!ufl

This condition occurs when the result of a flocating-point computation has an
exponent less than =128. The result of the computation is set to zero before
the condition is signalled. If an <on unit> returns to the point where the
condition was detected, execution continues using a value of zero.

The default <on unit> writes a comment on error_output and returns to the point
where the condition was detected.

Syntax:
{zerodivide condition name>::= zerodivide|zdiv

This condition occurs when the divisor of a fixed-point or floating-point
computation is zero. If an <on unit> returns to the point where the condition
was detected, the program is in error and the results of continued execution are
undefined.

The default <on unit> writes a comment on error_output and signals the error
condition.

10.4.21 u ef

Syntax:

<{programmer defined condition named)::=
{conditioni{cond}(<identifier>)!<identifier>

Any <identifier> not used to designate a PL/I condition and not otherwise
declared in the <block>, except as the name of a structure member, can be
declared as a condition and used to designate a programmer defined condition.
Programmer defined conditions behave just like other PL/I conditions, except
that the only way they are signalled is by the execution of a <signal
sStatement>. Refer to Section 5 for a discussion of declarations and the
<condition attribute>.

The: Multies operating system defines a number of conditions that are not

included. in the set of PL/I conditions. These conditions are considered to be
programmer defined conditions and behave as Such, except that they may be

10=-11 ’ AG94

signalled by the Multics operating system or by the execution of a <signal
statement>. Refer to the "Multics Programmers' Manual".

The default <on unit> writes a comment on error_output and calls the Multics
command processor. If the "start" command is typed control returns to the point
where the condition was signalled.

10-12 AG94

SECTION 11

INPUT/0UTPUT

11.1 Data Sets

A data set is either a stream data set or a record data set.

11.1.1 Stream Data Sets

A stream data set is an ordered sequence of data characters and control
characters. A control character is a pagemark or linemark. A4 data character is
any ASCII character, other than those used as control characters. A linemark is
an ASCII new line character. A pagemark is an ASCII new page character. The
effects of these control characters on the I/0 mechanism are discussed in
paragraph 11.2.

Stream data sets are operated upon be the execution of {get statement>s and <put
statement>s as described in section 12. :

11.1.2 Record Data Sets

A record data set 1is a set of discrete records each of which is the internal
representation of a PL/I value. The Multics system supports two kinds of record
data sets: sequential data sets and indexed sequential data sets. A seguential
data set is an ordered sequence of records without keys. An ipndexed seguential
data set is an ordered sequence of records each identified by a unique key. A
key is a character-string whose maximum length is 256 characters.

Records of a sequential data set are in chronological order; that is, the order
in which they were written. Records of an indexed sequential data set are in
key order, that 1is record x precedes record y if and only if the key of x is
less than the key of y.

Record data sets are operated upon by the execution of: <read statement>s,
{write statement>s, <rewrite statement>s, <delete statement>s and <locate
statement>s as described in Section 12.

11.2 Ejle Values and File-state Blocks

A file value identifies a file-state block. A file constant always identifies
the same file-stater bloek, but a file variable ecan identify any file-state
block. A file-state block, sometimes called a file, is a composite value that
describes the relationship between the program and a data set.

A program has as many file-state blocks as it has file constants. The file

description attributes declared for a file constant are really properties of the
file-state block..

17=1 AG94

A file-state block consists of:

1. Name of the file-state block. (filename)

2. A data set designator. (title)

. Current record designator. {(currentrecord)

. Next record designator. (nextrecord)

. Stream position designator. (streamposition)

. Initial file description attributes. (initialdescription)
. Current file description attributes. (filedescription)
. Input buffer.

. Output buffer.

10. Open/closed status.

11. Current line size. (linesize)

12. Current page size. (pagesize)

13. Current column position. (columnposition)

14, Current line number. (linenumber)

15. Current page number. (pagenumber)

16. External/internal status.

WOWOoO~NOVU =W

The parenthesized names are used throughout this document to denote the
components of a file-state block. The meaning of each value is discussed below:

The filename is a varying character-string of maximum length 32 that is the name
of the file-state block. The <declared name> of the file constant that
identifies the file-state block is the filename.
Example:

declare f file constant;

The file-state block identified by the file value of f has a filename of "f".

The title is a character-string that is used as a Multies I/0 attach description
as described in paragraph 11.3.

The currentrecord is either null or it designates a record in the data set
designated by title.

The nextrecord is either null or it designates the next record in the sequential
data set designated by title. Each time that the value of currentrecord is
changed, the value of nextrecord is updated. When the currentrecord has been
set null by the execution of a <delete statement> as described in paragraph
12.8, the nextrecord is used to find the next record of a sequential data set.

If the <get statement> or <put statement> contains a <string option> instead of
a <file option>, data stream is understood to be the string value identified by
the <string option>; otherwise, it is understood to be the data set associated
with the file.

The streamposition is either null or it designates the current character in a
stream data set.

The 1initialdescription is the set of file description attributes declared for
the file constant whose value identifies this file-state block.

Example:

declare f file stream input;

-

In this example, the initial file description attributes are "stream" and
"input".

The filedescription is the set of attributes that describe the data set. It is
formed when the file-state block is opened as described in paragraph 11.3.

The input buffer is used to support the execution of <read statementds
containing a <set option> and is described in paragraph 12.23.

7/79 11=2 AG94cC

The gutput buffer is used to support the execution of the <locate statement> and
i1s described in paragraph 12.17.

The open/closed status indicates whether the file-state block is open or closed.
Initially it is closed. '

The linesize is the maximum number of data characters that may be written
between linemarks in a data stream attached to a file-state block that has the
{stream attribute> and <output attributed. During stream output a linemark is
ocutput whenever a character is to be output and columnposition = linesize+l.
Linemarks are also output by evaluation of <skip option>s, <skip format>s, <line
option>s and <line format>s. They can also be output as a result of evaluating
a <column [{ormat>. Refer to Seetion 12.

The pagesize is the maximum number of linemarks that may be written between
pagemarks in a data stream attached to a file-state block that has the <print
attribute> without causing the endpage condition to occur. During output on a
file that has the <print attribute>, the endpage condition is signalled whenever
linenumber = pagesize + 1. The default <on unit> for the endpage condition
writes a pagemark.

The columnposition is the number of data characters input or output since the
last 1linemark plus one. In other words, it is the column into which the next .
character will be written, or the column from which the next character will be
read. The input or output of a linemark sets the columnposition to 1.

The linenumber is a count of the number of linemarks output since the last
pagemark plus one. The output of a pagemark sets the linenumber to 1.

The pagenumber is a count of the pagemarks output since the file was opened plus
one. The initial value of pagenumber is 1. Note that pagenumber can be set by
the <pageno pseudo> described. in paragraph 12.2.

The ex;erna;)in;gggg;‘ status ‘ihdicates, the scope of the file constant whose
value identifies this file-state block.

11.3 Opening 3 File

A file is opened by performing the following steps in the indicated. order:

1. Form the filedescription by forming the union of tiae initialdescription and
the <opening attributeds supplied by the <statement> performing the
opening. The following table gives the ‘<opening attributeds for all
input/output <statement>s capable of opening a file.

Statement Opening Attributes
<get statement> stream input

{put statement> stream output

<{read’ statement> record input#®

{write statement> record output®
{rewrite statement> record update
{locate statement)> record output
{delete statement> ' record update

<open statement) -<opening attributes>

given in <statement>
¥ If the initialdescription specifies an <update attribute>, the <input
attribute> or <output attribute> is not one of the <opening attribute>s
deduced from a <read statement> or <write statement>.
2. Augment. the filedescription with the <attributeds implied by any
<{attribute> already in the description.

11=-3 AG94

3.

T/79

Attribute Implied Attribute

direct record keyed
keyed record

print stream output
sequential record

update . record

If, after supplying implied <attribute>s, the filedescription is missing
one of the following required <attribute)s, the required <attribute> is
supplied by default.

Required Attributes Default

stream|record stream
inputioutputiupdate input
sequentialidirect sequential (if record)

If the filename is "sysprint" and the file-state block is external and the
filedescription contains the <stream attribute> and the <output attribute>,
augment the filedescription with the <print attribute).

The filedescription must now be a set of <attributeds described by the
following syntax:

<consistent file descriptiond>::= <{stream description)|
{record description>

<{stream description>::= stream{input|output[print]
(environment(interactive)]}

<record description>::= record{inputi{outputupdate}
{<sequential description>|{<direct description>}
(environment(stringvalue)]

{sequential descriptiond>::= sequentiallkeyed]
{direct description>::= direct keyed

If the filedescription contains the <print attribute> and the opening is
being performed by the execution of an <open statement> and the <opening>
contains a <pagesize option>, pagesize is set to the converted value of the
{pagesize option>; otherwise, it is set to a default value that depends on
the device or data set to which the stream is attached. If the stream is
attached to a terminal, pagesize is set to infinity, thereby preventing an
endpage condition from occurring; otherwise it is set to 60.

If the opening is being performed by the execution of an <open statement>
and the <opening> contains a <pagesize option>, the filedescription must
contain the <print attribute>.

If the filedescription contains a <stream attribute> and an <output
attribute>, and the opening is being performed by the execution of an <open
statement> and the <opening> contains a <linesize option>, linesize is set
to the converted value of the <linesize option>; otherwise, it is set to a
default value that depends on the Multics I/O System attachment. If the
Multies I/0 switch is attached to a terminal, linesize 1is set to the
current linesize of the terminal; otherwise, it is set to 132.

If the opening is being performed by the execution of an <open statement)
and the <opening> contains a <linesize option>, the filedescription must
contain the <stream attribute> and the <output attribute).

If the opening is being performed by the execution of an {open statement>
and the <opening> contains a {title option>, 1let t be the converted value
of the <title option>; otherwise, t is defined by the following:
If the filename is "™sysin® and the filedescription contains the
<{stream attribute> and <input attribute>, let ¢t be "syn_ user_inputF.

11-4 AG94C

10.

11.

11.4

If the filename is ‘'"sysprint" and the filedescription contains the
{stream attribute> and <output attribute>, let t be
"syn_ user_output'.

If neither of these two cases applies, let t be "vfile_ filename".

The character-string t is passed as an attach description to the Multics
I/0 system. Refer to the Multies PL/I Reference Manual, for a complete
description of the relationship between the Multics PL/I language and the
Multies I/0 system.

If the filedescription contains an <output attribute>, any existing data
set designated by the title 1is normally deleted and a new data set
conforming to the file description is created.

If the filedescription contains an <input attribute> or {update attribute>,
the data set designated by the title is checked for conformance with the
filedescription. The following table shows all valid filedescriptions for
each type of data set.

Data Set File Description
sStream stream input
sequential sequential record{inputiupdatel|

stream input

indexed sequential sequential
record{inputiupdate}(keyed]}
record direct keyed{inputiupdate}

If the filedescription contains a <stream attribute>, the columnposition is
set to one. If it also contains the <print attribute>, the linenumber and
pagenumber are set to one.. If it contains the <stream attribute> and the
{input attributed>, then the streamposition is set to the first character in
the data stream.

If the filedescription contains the <record attribute> and does not contain
the <output attribute>, nextrecord 1is set to designate the first record in
the data set.

In all other cases, the values of currentrecord, nextrecord or
streamposition are null.

If steps 1 through 10 were successfully performed, the open/closed status
is set "open"; otherwise, the undefinedfile condition is signalled.

Closing a File

A file is closed by performing the following steps in the indicated order:

1.

T/78

If there is an output buffer, a new record is created in the data set and
the cortent of the buffer is written as the value of the new record. If
there is an evaluated key associated with the buffer, it is associated with
the new record as its key. If any record in the data set already has this
key, the key condition is signalled.

If the file does not have the <keyed attribute>, the new record is appended
to the end of the data set; otherwise, the new record is inserted into its
proper place within the data set as determined by its key. After the
record is written, the output buffer is freed. An output buffer exists
when the last output operation on the file was the execution of a <loecate
statement>.

11-5 AGOUB

2. If there is an input buffer, it is freed. This circumstance occurs when
the 1last input operation on the file was the execution of a <read
statement> containing a <set option>.

3. If the data set was attached by the execution of a PL/I input/output
{statement>, the Multies I/0 system is called to detach the data set.

4. The open/closed status is set "closed".

Files are <closed by the execution of a <close statement>, upon normal
termination of a process or run unit, or by the Multics command: close_file.

If process termination vresults from partial destruction of the process or
exhaustion of process resources, the files open in that process, and in
contained run units, may or may not be closed. The same applies to run unit
termination.

Note that if a process terminates without closing a file, the contents and state
of the data set designated by that file are undefined.

11.5 Conditions and Files

Several of the conditions described in Section 10 are detected during the
execution of input/output <statement>s. Each I/0 condition name contains a
{reference> to a scalar file value. The file value 1identifies a file-state
block and effectively qualifies the condition name. An endfile condition for
file f is a different condition from an endfile condition for file g. Refer to
Section 10 for a full discussion of conditions.

Example:
on endfile(f) begin; ... end;
on endfile(g) begin; ... end;

Execution of the
for endfile on fil

3o

4

-

3

{statement>s in this xampl
e f le ¢

e
the other for endfi

establishes two <on unit>s, one
£3Ta -
I AT B

[

It is important to realize that the I/0 conditions are qualified by the file's
state block, not by the <reference> used in the condition name.

Example:
declare f file variable, g file constant;
f = g;
on endfile(f) begin; ... end;
on endfile(g) begin; ... end;
Execution of the second <on statement> in this example reverts the <on unit>

established by the -execution of the first <on statement> because f and g both
identify the same file-state block. .

T7/78 11-6 AG94B

SECTION 12

SINTAX AND SEMANTICS OF STATEMENTS

Throughout this section, whenever the execution of a {statement> is described,
the evaluation of its options and parts as if the opticn or part were present is
described. Such descriptions are not to be taken as an indication that the
described option or <statement> part is required; only the syntax and
constraints indicate whether or not an option is required.

12.1 The Allocate Statement

Syntax:

<allocate statement>::= [<prefig>]{allocateialloc}
<allocation>(,<allocation>]...;

<allocation>::= <allocation reference)
{{<in option>]{<set option>]}
[<set option>][<in option>]}

<in option>::= in(<reference>)

<set option>::= set(<reference>)

<allocation reference>::z <identifier>
Constraints:

Each <allocation reference> must identify a 1level-cne based or controlled
variable.

Evaluation of the <reference> in a <set option> must yield a generation of
storage of a scalar locator variable.

Evaluation of a <reference> in an <in option> must yield a generation of storage
of a scalar area variable.

If the <allocation referenced> of an <allocation) identifies a controlled
variable, the <in option> and <set option> must be omitted.

1f the <allocation reference> of an <allocation)> identifies a based variable and
the <set option> is omitted, the based variable must be declared with a <based
attritute> containing a <locator qualifier>. In that case, the <locator
qualifier> is used as a <set option> and it must satisfy the constraints
specified for the <set option>.

If the <set option> or derived <set option> of an <allocation)> identifies an
offset variable, the <in option> must be present or ihe offset variable must
have been declared with uin <offset attribute> containing a <reference>. In the
latter case, the <referznce> is used as the <in optior>, and it must satisfy the
constraints specified for the <in option>.

12-1

If the <set option> or derived <set option> identifies a pointer variable and
the <in option> is omitted, a default area called "system storage” is supplied
as the <in option>.

Semantics:

An <allocate statement> 1is executed by -evaluating its <allocation>s from
left-to-right. Each evaluation consists of performing one of the following:

1. If the <allocation reference> identifies a controlled variable, a new
generation of the controlled variable is allocated in "system storage".
The newly allocated generation and its evaluated extents are stacked on the
previous generation and its extents. References to the variable reference
the newly allocated generation and references to the extents of the
variable reference the extents of the newly allocated generation. The
<initial attribute>s of the controlled variable's declaration are evaluated
in an unspecified order and initial values are assigned to the newly
allocated generation.

2. If the <allocation reference> identifies a based variable, a new
generation of the based variable is allocated in the area identified by the
<in option> and a locator value that identifies the generation is assigned
to the variable identified by the <set option>. The <initial attribute>s
of the based variable's declaration are evaluated in an unspecified order
and initial values are assigned to the newly allocated generation. Before
initialization, the value of the <expression> of each <refer option> is
assigned to the variable identified by the <reference> of the <refer
option>.

If insufficient storage exists within the area identified by the <in option>,
the area condition occurs. If insufficient storage exists within T"system
storage", the storage condition occurs. Refer to paragraph 10.4 for a
discussion of the area and storage conditions. Refer to paragraph 4.3.2 for a
discussion of storage classes and storage allocation.
Examples:

allocate X set(P);

allocate X,Y,Z;

allocate X in(A) set(P),Y in(B) set(Q);

12.2 The Assignment Statement

Syntax:

<assignment statement>::= [<prefix>]l<target>[,<target>]...
=<{expression>(,<by-name optiond>];

{target>::= <reference>|<pseudo~-variable>
<pseudo=-variable>::= <string pseudo>|<substr pseudo>|
{unspec pseudo>|<pageno pseudo>|<real pseudo>|
<imag pseudo>]<onchar pseudo>|<onsource pseudo>
{string pseudo>::= string(<referenced>)

<substr pseudo>::= substr(<reference>,
<expression>[,<expression>])

<unspec pseudo>::= unspec(<reference>)

{pagenc pseudc>::= pageno{<reference>)

T/79 12-2 AG94C

<real pseudo>::= real(<reference>)
<imag pseudo>::= imag(<referenced)
<onchar pseudo>::= onchar{ ()]
{onsource pseudo>::= onsource(()]
<by-name option>::z by name
Constraints: ‘

If the <expression> is a <reference> to a scalar character-string or bit-string
variable, the generation of storage identified by that <reference> cannot
overlap the generation of storage identified by any of the {target>s if the
generation of storage identified by the <target> starts to the right of the
start of the generation of storage identified by the <expression>. Refer to
paragraph 4.3.3 for a discussion of storage sharing.

Because of compiler optimizations, if the <expression> is a <reference> to the
string, substr, or unspec built-in functions, and the first argument of the
{reference> is a <reference> to a variable, the <expression> is considered to be
a <reference> to a .generation of storage, and the constraint in the previous
paragraph applies.

Evaluation of the <expression> cannot: allocate, free, or assign a value to any
{target>, or any generation of storage identified by any <reference)> contained
within any <target>; 1i.e. {subscript>s, etec.

Evaluation of the <reference> in a <{string pseudo> must yield a generation of
storage of a scalar or aggregate string variable suitable for string-overlay
defining as described in paragraph 4.3.3.6.

Evaluation of the <reference> in a ' <substr pseudo> must yield a generation of
storage -of a scalar or aggregate string variable. If any sScalar component of

the variable was declared with the <varying attribute>, that component must
currently have a value.

Evaluation of the <expressionds in a <{substr pseudo> must yield scalar or
aggregate arithmetic or string values. If either <expression> yields an
aggregate value, its aggregate type must not be higher than the aggregate type
of the,<referenc§> of the <substr pseudo>.

Evaluation of the <reference> in an <unspec pseudo> must yield a generation of
storage of a scalar or aggregate variable whose storage is connected.

Evaluation of-the <reference> in a {pageno pseudo> must yield a scalar file
value.

Evaluation of the {reference> in a <real pseudo> or <imag pseudo> must yield a
generation of storage of a secalar or aggregate complex variable.

If evaluation of the {expression> yields an area value, it must be a scalar area
value and each <target> must be a <reference)> to a scalar area variable.

If the <assignment statement> contains a <by-name optiocn>, it may contain no
{function reference>s yielding non-scalar values unless they are contained
inside a <locator qualifier>, a <subseript>, or an argument 1list>. This
prohibits the use of structure- or array-valued procedure functions and built-in
functions when the <by-name option> is specified.

T/79 12-3 AG94C

This page intentionally left blank.

T/79 AG94C

If the <assignment statement> contains a <by-name option>, it may not contain
any <pseudo-variable>s, and all <target>s must be <referenceds to structures or
arrays of structures.

Semantics:

If evaluation of the <expression> yields an area, let A denote that area and
assign A to each <target> taking them from left-to-right. If the size of a
target area is insufficient to contain A, the area condition occurs. A target
area must be large enough to contain all generations currently allocated in A
and must be large enough so that each generation can be alloecated in the target
area with the same offset as it had in A.

If the <assignment statement> contains a <{by-name option>, the following steps
are performed:

1. For each <target> in the <assignment statement> and for each
{reference> to a structure contained in the <expression)> but not
contained within a <loecator qualifier>, <subseript>, or <argument
list>, create a 1list of names of all non-structure members of the
referenced structure or contained substructures. Each member's name
includes the names of its contained structures up to but not including
the name of the structure identified by the structure <reference>.

2. Form the intersection of the 1lists created in step 1 and call the
resulting list the by-name-parts-list. If the by-name-parts-list is
empty, treat the <assignment statement> as a <null statement>. This
means that only names that are contained in all {target>s and all
appropriate- <reference>s in the <expression> will be assigned.

3. Determine the aggregate-type for each <target> and for each
{reference> to a structure contained in the {expression> but not
contained in a <locator.qualifier>, {subseript>, or <argument list> by
the following method:

a. Each <reference> is a structure or array of structures depending
- on its <declaration)> and <subseripts>, if any.

b. The structure or array of structures mentioned in step a contains
one non-structure member for each name in the by-name-parts-list.
Each member acquires dimensions from two sources: its own
{declaration>, and the {declaration> of every containing
structure that is an array.

4, Perform the assignment using the new aggregate-types according to the
following rules for assignment.

T/7T9 12-3.1 AG94C

If evaluation of the <expression> does not yield an area, an <assignment
statement> is executed as if it were replaced by a set of simple <assignment
statement>s of the form:

V = E;
T1 = V3
T2 = V;
Tn ; v;

where E is the <expression> and V is a variable whose aggregate type and data
type are the aggregate type and data type of the <expression>. T1,T2,...,Tn are
the <target>s of the original <assignment statement> taken from left-to-right.
If Tj is an arithmetic variable, a bit-string variable, or a pictured variable
defined by a <numeric picture>, and E 1is a pictured value defined by a <numeric
picture>, the value of E is encoded to an arithmetic value as described in
Section 8. In that case, the data type of V is the data type of the encoded
value.

The rewritten <assignment statement> 1is evaluated by performing the following
steps in the indicated order:

1. E is evaluated and its value is assigned to V.

2. For §j = 1,2,...,n: the value of V is promoted to a value that
conforms to the aggregate type of Tj, the promoted value is converted
to conform to the data type of Tj, and the promoted and converted
value V' is assigned to Tj. The value of V is unaffected by these
promotions and conversions. Refer to Sections 8 and 9 for a
discussion of conversions and promotions.

If Tj is an aggregate character-string or bit-string variable, the scalar
components of V' are assigned to the corresponding scalar components of Tj using
the following rules for scalar string assignment.

If Tj is a scalar pictured character-string variable, V' is edited into Tj as
described in paragraph 8.2.12.

If T3 is 2 sealar, ncnpictured, character-string or bit-string variable, the
following rules apply to the assignment. Let n be the -length of V', and let m
be the declared length of Tj.

1. If Tj is varying and n<m, assign V' to Tj and set the current length
of Tj to n.

2. If Tj is nonvarying and n<m, extend V' to the right by concatenating
m-n blanks (if Tj is character) or zeroces (if Tj is bit) and assign
the extended value to Tj.

3. If n>m, truncate the rightmost n-m characters or bits from V' and
assign the truncated value to Tj. If Tj is varying set the current
length of Tj to m.

4, If n=m, assign V' to Tj and if Tj is varying set the current length of
Tj to m. ’

If the <target> is a <string pseudo>, the promoted and converted value i-

assigned to the generation of storage identified by the <reference> as if it
were the generation of storage of a nonvarying scalar string variable.

T7/79 12=-4 AG94C

When

one or more operands of a <pseudo-variable>, other than a <{string pseudo>,

is an aggregate, the operands are promoted to the highest common aggregate type.

The

promoted and converted value V' is assigned to the {pseudo-variable> by

assigning the corresponding scalar components in an unspecified order as
described in the following paragraphs:

If the <target> is a <substr pseudo>, the values of the <expression>s are
converted to fixed-point, binary, real, values of precision (24,0). Let i
be the converted value of the first <expression> and let J be the converted
value of the second <expression>. If the string variable identified by the
{reference> is declared with the {varying attribute> let n be the current
length of the string variable value: otherwise, let n be the esvaluated
string length extent associated with the variable's generation of storage.

If the second <expression> is omitted, let j be ne-i+l. If (0£i=1<j+i~1<n)
is not satisfied, the stringrange condition ccecurs. If deteection of the
condition is disabled, the program is in error and the results of continued
execution are undefined.

If the inequality is satisfied, the promoted and converted value is
assigned to the string variable beginning with the ith character or bit and
continuing through the (i+j-1)th character or bit if Jj%=0; otherwise if
j=0, all characters or bits of the string are unmodified. All other
ctharacters or bits of the string are unmodified.

If the <target> is an <unspec pseudo>, the generation of storage of the
{reference> is treated as a scalar bit-string variable and the promoted and
converted value V' is assigned to it.

If the <target> is a <pageno pseudo>, the promoted and converted value V!
is assigned to the pagenumber value of the file-state block identified by
the file value of the <reference> of the <{pageno pseudo>. The file-state
block must be open and must have the <print attribute>.

If the <target> is a <real pseudo>, the promoted and converted value V' is
assigned to the real part of the complex variable identified by the
{reference> of the <real pseudo).

If the <target> is an <imag pseudo>, the promoted and converted value V' is
assigned to the imaginary part of the complex variable identified by the
{reference> of the <imag pseudo>.

If the <target> is an <onchar pseudo>, the promoted and converted value V'
is assigned to the current generation of "onchar", which must not be the
initial generation. Refer to paragraph 10 and paragraph 13.5.

If the <target> is an <{onsource pseudo>, the promoted and converted value
V' is assigned to the current generation of TM"onsource™, which must not be
the initial generation. Refer to Section 10 and paragraph 13.5.

Examples:

T/79

A,B,C = 0;

string(S) = "new value";
substr(X,i+5,Kk-5),W = Y}!Z;
A = B+C;

A B+C, by namej;

n

D = B+C, by name;

"

Note that the: action of the previous two <statement>s is not necessarily
the same as that of the following <statement)>: N

A,D.=.B+C, by name;

12-5 ' AG94C

12.3 The Begin Statement

Syntax:
<begin statement>::= [<prefix>]begin(<options attribute>];
Semantics:

A <begin statement> defines the beginning of a <begin block>. If executed by
the flow of control, it causes a block activation of the <begin block>. Refer
to Section 3 for a discussion of block activation and to Section 2 for the role
of the <begin statement> in determining the structure of a <begin block>.

Because a <label prefix> on a <begin statementd> produces a declaration of a
label constant rather than a declaration of an entry constant, a <begin block>
cannot be invoked by the execution of a <call statement> or evaluation of a
{function reference>. The <options attribute> may only specify the keyword
"non_quick" (see 5.4.36, Optianms). '

Example:

begin;

12.4 The Call Statement

Syntax:

<call statementd>::= [<prefix>]call<entry reference>
[Kargument list>];

<argument list>::= ([<expre;§ion>[,<expression>]...])
{entry reference>::= <reference>
Constraints:
Evaluation of the <entry reference> must yield a scalar entry value.

The <entry statement> or <procedure statement> identified by the value of the
{entry reference> cannot have a <{returns attribute>.

The number of <expression>s in the <argument 1list> must be equal to the number
of <identifier>s in the <parameter list> of the <entry statement> or <procedure
statement> identified by the value of the <entry reference>,
Semantics:
A <call statement> is executed by evaluating the <entry reference> and all
{expression>s in an undefined order. The entry identified by the value of the
<entry reference> is invoked and each <expression> in the <argument 1list> is
associated with the corresponding parameter in the <parameter list> of the
invoked entry. Refer to paragraph 6.10 for a discussion of argument passing,
and refer to Section 3 for a discussion of block activation.
Examples:

call alpha(a,B,C);

call beta();

call gamma;

11717 12-6 AGYO4A

12.5 The Close Statement

Syntax:

<clos¢ statement>::= [<prefix>]close<file option>
[,<{file option>]...;

{file option>::= file(<reference>)
Constraint:

Evaluation of each {reference> must yield a scalar file value.

Semantics:

A <close statement> is executed by' evaluating its ffile option>s in an
unspecified order. For each <file option>, let f denote the file-state block
identified by the value of the <reference>. If £ is closed, take no further
action for this <file option>; otherwise, close f as described in paragraph
11.4,

Example:

close file(f), file(q);

12.6 The Declare §tategent

Syntax:

{declare statement>::= [<label prefix)]...{declare!dcl}
<declaration list>;

<{declaration list>::= {declaration component>
[,<declaration component>]...

{declaration component>::= [(level)]{(deelared name> |
(<declaration list>)}[<attribute set>]

<deélared name>::= <identifier)

<attribute set>::= <attribute>...

<level>::= <deecimal integer>
Sgpantics:

Execution of a <declare statement> causes control to pass to the <statement>
following the <declare statement>.

A <declare statement> establishes a declaration for each <declared name> and is

Examples:
declare (a bit, b fixed, ¢ pointer) internal static;

declare 1 S, 2 A, 2 B;

12-7 ' - AGI4:

12.7 The Default Statement

Syntax:

{default statement>::= [<label prefix>]...{default!dft}
{systeminone!<user defaults>};

user defaults>::= (<predicated>){errori<attribute set>[,<attribute set>]...}

attribute set>::= <attribute>...

{predicate>::= <predicate one>|
<predicate>|<predicate one>

<predicate one>::= {predicate two>|
{predicate one>&<{predicate two>

<predicate two>::= <{predicate threed>|“<predicate two>

{predicate three)>::= (<predicate>):<attribute keyword> |
{range>

<range>::= range(*)|range(<identifier>)|
range(<letter>:<letter>)

attribute keyword>::= <identifier>

Semantics:

Execution of a <default statement> causes control to pass to the <statement)

following the <default statement>.

A <default statement> supplies <attributed>s to declarations with
<attribute set>s, and is fully described in Section 5.

Example:

default (variable & range(c)) character(1);

12.8 The Delete Statement

Syntax:
<delete statement>::z [<prefix>]delete
{<file option>(<key optien>]|
[<key option>]<file option>};
{file option>::= file(<reference>)
<key option>::= key(<expression>)

Constraints:

incomplete

Evaluation of the <reference> in the <file option> must yield a scalar file

value.

Evaluation of the <expression> in a <key option> must yield a scalar string or

arithmetic value.

7/79 , 12-8

AG94C

Semantics:

A <delete statement> is executed by performing the following steps in the
indicated order:

1. Evaluate the <file option> and the <key option> in an unspecified order.

Let f denote the file-state block identified by the value of the <file
option>.

Convert the value of the {expression>. in the <key option> to a
character-string. ’

2. If £ is closed, open it as described in paragraph 11.3. After f is opened,
it must have the <update attribute>. If a <key option> is specified, f
must have the <keyed attribute). ’

3. If a <key option> is specified, set the currentrecord of f to designate the
record identified by the converted value of the <key option>. If no such
record exists in the data set attached to f, signal the key condition.

If a <key option> is specified and f has the <sequential attribute>, set
nextrecord to designate the record following the new current record. If no
next record exists, set nextrecord null.)
If no <key option> is specified, currentrecord must not be anull.
4. Delete the record designated by currentrecord and set currentrecord null.
Examples:
delete file(f) key(k);

delete file(g); o~

12.9 he Do

Syntax:

<do statement>::= [<prefix>]{<noniterative do>|
{iterative do>}

{noniterative do>::= do;

<iterative do>::= {<do while>|<multiple dod>};

<do while>::= do while(<while expression))

<while expression>::= <expression>

<multiple dod::= do<index>=<control>[,<control>]...
{index>::= <{reference>|<pseudo-variahle>

<eontroll>::= <sihgle loop>i{<repeat control)!
{fortran control)>

<{single loop>::= <expression>[while(<while expression>)]

<repeat‘control):::-<first>repeat<thereafter>
[while(<while expression))]

{first>::= <expression>

{thereafter>::z <expression>

12-9 AGY94

{fortran control>::= <start>{to<limit>[by<increment>]!
by<increment>[to<limit>]}[while(<while expression>)]

{start>::= <expression>
<limit>::= <expression>

{inerement>::= <expression>

Constraints:
Evaluation of all <expression>s must yield scalar values.

If an <index> 1is a <reference>, evaluation of the <reference> must yield a
generation of storage of a scalar variable whose data type is other than area.

If an <index> is a <pseudo-variable>, it must satisfy the constraints given in
paragraph 12.2 for the <target> of an <assignment statement> and it must be a
scalar.

. The data types of the values of the <single loop>, <first>, <thereafter> and
<{start> must be such that they can be assigned to the <index).

If a <fortran control> contains a <limit>, evaluation of the <index> or the
<limit> cannot yield complex arithmetic values.

The <index> of a <multiple do> containing one or more <fortran control)s must
have a data type such that the <index> and each <inerement> can form an
{assignment statement> of the form:
{index> = <index> + <increment>;

Control cannot transfer from a <statement> outside of an <iterative group> to a
{statement> that is a <block component> of an <iterative group>. Refer to
Section 2 for the syntax of a <group>. :
Note that the scope of a <condition prefix> of a <do statement> is limited to
the <do statement> and does not inelude the <group> headed by the <do
statement>.
Semantics:
A <do statement> is executed by selecting the applicable case and performing the
steps for that case in the indicated order.
Case (The <do statement> is a <noniterative do>)

1. Transfer control to the <statement> following the <do statement).

2. Whenever control reaches the <end statement> that ends the {group>,
transfer control to the <statement> that follows it.

Case (The <do statement> is a <do while))

1. Evaluate the <while expression> and convert its value to a bit-string. If
all bits are 0, transfer control 30 the <statement> following the <end
statement> that ends: the <group>; otherwise, transfer control to the
{statement> that Tollows the <do statement).

2. Whenever control reaches the <end statement> that ends the {group>, goto
step 1 of this case.

12-=10 AG94

Case (The <do statement) is a <multiple do>)

1.

Evaluate the left-most <control) by selecting the applicable case and
performing the steps for that case in the indicated order. When a step
calls for the evaluation of the next <control> and no more {eontrol>s
remain, transfer control to the {statement> following the <end statement>
that ends the <group>. When a step calls for the evaluation of the next
{control> and one or more unevaluated <control)s remain, evaluate the
left-most unevaluated <control) by selecting the applicable case and
performing the steps for that case in the indicated order.

Case (The <control)> is a <single loop>)

1. Assign the value of the <{expression> to the <index> by evaluating an
<assignment statement> of the form:

<index> = <expression>
2. If the <control)> contains a <while expression>, evaluate the <while
expression> and convert its value to a bit-string. If all bits are 0,
evaluate the next {control>; otherwise, perform the next step of this
case.
3. Transfer control to the {statement> following the <do statement>.

4. Whenever control reaches the <end statement> that ends the <group>,
evaluate the next <control). .

Case (The <control)> is a <repeat controcl))
1. Let V be the actual text of Kfirst>.
2. Let Index be a variable whose data type is the data type of <index)
and whose generation ~-of Storage is the generation identified by
<index>.

3. Assign a value to Index by executing an <assignment statement> of the
form:

Index = V;

4., If the <repeat control)> contains a <while expression>, evaluate the
<{while expression)> and convert its value to a bit-string. If all bits
are 0, evaluate the next <{control>; otherwise, perform the next step
of this: case.

5. Transfer control to the {statement> following the <do statement).

6. Whenever control reaches the <end statement> that ends the <group>,
let V be the actual text of <thereafter>, and g0 to step 3 of this
case.

Case (The <control> is a <fortran control))
1. Perform the next three steps in an undefined order.
2. If <1limit> is given, evaluate it an let the value be L.

3. If <increment> is given, evaluate it and let the value be I;
otherwise, let I be 1.

4. Let Index be a variable whose data type is the data typer of <index>

and whose: generation of storage is the generation identified by
<index>..

12=11 _ AG94-

5. Assign the <start> to Index by executing an <assignment statement> of
the form:

Index = <start>;
.6. If the <fortran control)> does not contain a limit, let S be 1;
otherwise, let S be 0 if 1I20 and Index>L, or if I<0 and Index<L;
otherwise, let S be 1.

7. If S is 0, evaluate the next <controld>; otherwise, perform the next
step of this case. :

8. If the <fortran control)> contains a <while expression>, evaluate the
<{while expression> and convert its value to a bit string. If all bits
are 0, let W be 0; otherwise, let W be 1. If the <fortran control)
does not contain a <while expression>, let W be 1.

9. If W is 0, evaluate the next <control>; otherwise, transfer control to
the <statement> following the <do statement>.

10. Whenever control reaches the <end statement> that ends the {group>,
assign the <index> a new value by executing an <assignment statement)>
of the form:

Index = Index + I;

11. Go to step 6 of this case.

Examples:

do; ... end;

doi=1¢%to 10; ... end;

do X = a,b,ec,d; ... end;

do X = 1 to =5 by -1 while(a<b); ... end:

de P = Head repeat{P->Next) while{P"=aull); ... ead;

12.10 TIhe End Statement

Syntax:
<end statement>::= [<prefix>]end(<closure label>];
{eclosure label>::=z <identifier>

Constraint:

The <closure label> must be a <declared name> that appears in a <label prefix>
of a preceding <do statement>, <begin statement>, or <procedure statement)>.

Semantics:
The effect of a <closure label> is described in paragraph 2.14.

An <end statement> denotes the end of a <group>, <beginm block>, or <procedure>
as described in Section 2.

When the flow of control executes an <end statement)> that denotes the end of a

<{procedure>, the effect is as if a <return statement) without a2 <{return value>
had been executed.

12=12 AG94

When the flow of =ontrcl executes an <end statement> that denotes the end of a
<begin block>, the current block activation is terminated and the preceding
block activation bu:comes the current block activation. Control is transferred
to the <statement> following the <end statement>.

The effect of executing an <and Statement> that denotes the end of' a <group>
depends on the <do statement)> that heads the <group>. Refer to paragraph 12.9.

Examples:
P: procedure;

do while{x<y);

end; /*end of group*/

12.11 The Entry Statement

Syntax:

<entry statement>::= <label prefix>...entry
[([<parameter list>])][<entry option>]...;

{entry optiond>::= <returns-attribute>}<reducible-attribute>:
{irreducible attribute><options attribute>

{parameter list>::= {identifier>[,<identifier>]...
Constraints:

Each <identifier> in the {parameter list> must identify a level-one variable
declared in the immediately containing <block>.

If control passes to the <entry statement> by the execution of a <eall
statement>, the <entry statement> cannot have a <returns attribute>.

If control passes to the {entry statement> by the evaluation of a <function
reference>, the <entry statement> must have a <returns attribute>.

The number of <identifier>s in the {parameter list> must equal the number of
{expression>s in the <argument 1list> of the <call statement> or {function
reference> that invoked this entry.

An <entry statement> cannot have both a <reducible attribute> and an
<irreducible attribute>.

An <entry statement) containing a <returns attribute> must have exactly one
{returns attribute> with a <returns descriptor>.

No <label prefix> can contain a <prefix subscript>.

The- <options attribute> may only specify the keyword "variable™.

12-13) AGYS

Semantics:

An <entry statement)> denotes an entry to a <procedure>. When control is
transferred to the entry by the evaluation of a <function reference> or the
execution of a <call statement>, a new block activation of the <procedure>
occurs and the arguments of the <function reference> or <call statement> are
associated with the parameters in the <parameter 1list>. Refer to paragraph
3.3.1 for a discussion of block activation and refer to paragraph 6,10 for a
description of arguments and parameters,

If control reaches an <entry statement> as a result of completing the execution
of the preceding <statement>, control is transferred to the <statement>
following the <entry statement).
Because the <label prefix> of an <entry statement> results in the declaration of
an entry constant rather than a label constant, a <goto statement> cannot
transfer control to an <{entry statement>.
Example:

: entry(A,B) returns(bit(1));
In this example, E is an entry whose invocation results in a bit-string value.

The entry requires two arguments which are associated with the parameters A and
B.

12.12 The Format Statement

Syntax:

{format statement)>::= [<condition prefix>]...
<label prefix)...forma;ﬂ(format specification list>);

{format specification list>::= <format specification>
[,{format specification>]...

{format specification>::

-
=
Zibamabian SankawMizZ
N VS GQVAWVL b GEN WNJE 7\ Ve

mat itemd|
>)
<iteratiqn factor>::= <decimal integer>|(<expression>)

<format item>::= <data format> |<control format>;
{remote format>

{data format>::= <real format)> |<{complex format)>|
<bit-string format>|<{character-string format>|
{picture format> ,
<real format)>::= {fixed-point format) <{floating=-point format>
<fixed-point format>::= f(<w>[,<d>[,<k>1])
<floating-point format>::= e(<w>[,<d>[,<s>11)
{complex format>::= c(<format part>[,<{format part>])

<{format part>::= <{picture formatd|
{fixed-point format)> {<floating-point format>

<picture format>::= p"<picture>™
<bit-string format>::= <radix factor>[(<w>)]
<radix factor>::= {bibT1{b2ib3ib4}

M"aT 12-14 AGY4A:

{character-string format>::=z al(<w>)]
<w>::= <expression>

<d>::= <expression>

<k>::= <expression>

<s>::= <expression>

<remote format>::=z r(<reference))

<control formatd>::=z <column formatd>!<x format> |
<page format)>|<skip formatd>!<line format)>

<column format>::= {columnicol}(<expression>)
<x format>::= x(<expression>)
<{page format>:::= page
<{skip format>::= skip((<expression>)]
{line format>::= line(<expression>)
Constraints:
Evaluation of all <expression>s must yield scalar arithmetic or string values.

If the <format statement> is controlling the execution of a <get statement>,
each <bit-string format> and each <{character-string format> must contain a <w>.

Evaluation of the <reference> in a {remote format)> must yield a secalar format
value.

Each <format specification 1list> must contain at least one <data formatd> or
{remote format)>.

"Semantics:

The <format statement> controls the execution of a <get statement) or <put statement>
containing a <get edit> or <put editd. Each time the <get statement> or
{put statement> transmits a value to or from the data stream it passes control
to the <format specification.list>.

Th {format item>s of a <format specification 1ist> are evaluated from
left-to-right. When control encounters a {format specification> containing an
{iteration factord>, the <iteration factor)> is evaluated and converted to a
fixed-point, binary, real, integer, n. A <format specification> containing an
{iteration factor> is used n times. If n < 0, the program is in errer. If
n = 0, the <format specification> is ignored. If the <format specification> is
a parenthesized <format specification list>, the entire list is used n times.

Each time control passes to a <format specification 1list> all <format itemd>s
between the last used <format item> and the next <{data format> are evaluated,
then the next <data format> item is evaluated and used to control the conversion
of the value being transmitted to or from the data stream.

If control reaches a <remote format>, the <reference> is evaluated to yield a
format value. The <format specification list> contained in the <format statement>
identified by the format. value 1is invoked as if it were a <procedure>. When
control returns from the <format statement>, the next <format item> is evaluated.

If control reaches the end of the outermost <format specification 1ist> of a
<{get statement> or <put statement> and one or more values remain to be transmitted
to or from the data stream, control passes to the ©beginning of the
{format specification 1list>.

11/7T 12-15 AG93A.

If control reaches the end of the outermost <format specification list> in a
{format statement> and one or more values remain to be transmitted to or from
the data stream, control returns to the <remote format> that invoked the
{format statement).

If control reaches a <format statement> as a result of normal execution of the
preceding <statement>, control is transferred to the <statement)> following the
{format statement)>. -

Because the <label prefix> on a <format statement> is declared as a format constant,
it is not possible to transfer control to a <format statement> by the execution
of a <{goto statement).

Throughout the following discussion of the semantics of {format item>s, file is
understood to be the file-state block identified by the file value of the <reference)
of the <{get statement> or <put statement> being controlled by the <format statement)>.

Linesize, pagesize, columnposition, pagenumber and linenumber designate values
in the file. Advancing an input data stream or placing characters in an output
data stream affect these values as described in Section 11.

If the <get statement> or <put statement> contains a {(string option> instead of
a <file option>, data stream is understood to be the string value identified by
the <string option>; otherwise, it is understood to be the data set identified
by the title of the file.

If the <{get statement> or <put statement> contains a {string option> it is an
error to attempt to evaluate a <page format>, <skip format>, or <line format).

A <column format> is evaluated by evaluating its <expression> and converting the
value of the <expression> to a fixed-point, binary, real, integer, K; K must be
greater than zero. The following cases describe the affects of the <column
format> on the data stream:

If K < columnposition and the file has the <input attribute>, the data
stream is advanced to the next linemark, It is then advanced K-1 characters
and columnposition is set to K. If a linemark is encountered before the
Kth character, the stream is positioned to the character following this
linemark and columnposition is set to one.

If K < columnposition and the file has the {output attribute>, a linemark
and K-1 blanks are placed into the data stream and columnposition is set to
K. o

If K > columnposition and the file has the <input attribute>, K-columnposition
characters are ignored and the columnposition is set to K. If a linemark
is encountered before the Kth character, the stream is positioned to the
character following the linemark and columnposition is set to one.

If K > columnposition and K > linesize and the file has the {output attribute>,
a linemark is placed into the data stream and columnposition is set to one.

If K > columnposition and K< linesize and the file has the {output attribute>,
K-columnposition blanks are placed into the data stream and columnposition
is set to K.

An <x format> is evaluated by evaluating its {expression> and converting the
value of the <expression> to a fixed-point, binary, real, integer, K; K must be
greater than or equal to zero. If the data stream is being input, the next K
characters of the stream are ignored. If the end of the data stream is encountered
on the first character, signal the endfile condition. If the end of the dats
stream is encountered after the first character, signal the error condition. If
the data stream is being output, K blanks are placed into the stream. The
effect of linemarks in the input or linesize on the output is that described for
<data format>s in this section.

3/81) 12=16 AG94E

A <page formatd> is evaluated by placing a pagemark into the data stream, setting
the linenumber and columnposition to one, and adding one to the pagenumber. The
program is in error if the file does not contain the <print attribute>.

A <skip format> is evaluated by evaluating its <expression> and converting the
value of the <expression> to a fixed-point, binary, real, integer, K. If the
<expression> is omitted, let K be 1. If the file does not have the <print
attribute>, K must be greater than zero; otherwise, it must be nonnegative. .

If the file contains the <{input attribute>, advance the data stream until K
linemarks have been encountered. The stream is positiocned %o the character
following the Kth linemark and the columnposition set to one. If the end of the
data stream is encountered during the scan, signal the endfile condition.

If the file has the <output attribute> and linenumber>pagesize, place K linemarks
into the data stream.

If the file has the <output attribute> and pagesize>linenumber, place
min(K,pagesize+l-linenumber) linemarks into the data stream. If
K>pagesize+1-linenumber, signal the endpage condition. 1In all cases of output,
each linemark sets columnposition to one and adds one to linenumber.

If K=0, an ASCII carriage-return character is placed into the data stream and
columnposition is set to one. The effect is to reposition the output stream
back to the beginning of the current line such that additional output will
overprint, but not replace, data already on the line. Note that overprinting
will only occur if the device on which the stream is printed obeys the carriage-return
control character.

A <(line format> is evaluated by evaluating its <expression> and converting the
value of the <expression> to a fixed-point, binary, real, integer, K. If K < 9,
the program is in error. If K = linenumber and columnposition = 1, nothing is
placed in the data stream and no file control values are changed. If X >
pagesize or K < linenumber, pagesize-linenumber+llinemarks are written and the
endpage condition is signalled, unless linenumber 2> pagesize+1. In the latter
case, a pagemark is written into the data stream. If K > linenumber and X <
pagesize, K-linenumber linemarks are placed into the data stream. The linenumber
is set to K and the columnpdsition is set to one. The program is in error if
the file does not contain the <print attribute).

A <data format> is evaluated by evaluating its <expression>s and converting
their values to fixed-point, binary, real, values of precision (17,0). If the
data stream is being inpuk, let w be the converted value of <w> or the number of
characters described by the <picture format>. The next w characters of the data
stream are converted aceording to the rules for format controlled input conversion
given in paragraph 8.2.11. If the end of the data stream is encountered on the
first character of the w characters, signal the endfile condition. If the end
of the data stream is encountered after the first character, signal the error
condition. The converted value is then assigned to the current target of the
{get edit>.

If the data stream is being output, the current output value is evaluated and
converted according to the rules for format controlled output conversion given
in paragraph 8.2.11. The converted value is then placed into the data stream.

If during input, the field of characters to be converted contains one or more
linemarks, the linemarks are ignored, except that each linemark causes the
columnposition to be set to one.

If during output, the converted value does not fit onto the current line, let w
be the number of characters to be output and let n be linesize-columnpositions+1.
The leftmost n characters are placed into the data stream, followed by a linemark.
Let m be the number of characters remaining to be output, (w=-n). If m £ linesize,
the remaining characters are placed into the data stream and columnpcsition is
set to m+l. If m > linesize, let n be linesize. n characters are placed into
the data stream followed by a linemark, m is set to m-n and the process 1is
repeated until m < linesize. The remaining characters are output as described
above for m £ linesize.

3/81 12-1T7 AG94E

Examples:
get edit(a,b,c)(r(F));
F: format(e(14,2),F(10),a(5));
put edit(x,y,z)(r(F1));
F1: format(page,a,skip(3),2 e(14,1));

12.13 The Free Statement

Syntax:
{free statement)>::= (<prefix>]free<freeing>(,<freeing>]...;
<{freeing>::= <free reference>(<in option>] .
<in option>::= in(<reference))
{free reference>::= <reference>

Constraints:

Evaluation of a <reference> in an <in option> must yield a generation of storage
of a scalar area variable.

Evaluation of the <free reference> must yield a level-one generation of storage
of a based or controlled variable.

The <in option> must be omitted if the <free reference> identifies a controlled
variable or if the generation of storage yilelded by evaluation of the <free
reference> is allocated in "system storage”.

Standard PL/I requires that the <in option> be present if the generation of
storage is not allocated in "system storage”", but Multies PL/I does not require
. the <in option> in this case.

If the <in option> is present, the generation of storage yielded by evaluation
of the <free reference> must be-allocated in the area identified by the <in
option>,

Semantics:

The <{free reference>s and <in option>s of all <freeingd>s are evaluated from
left-to=-right. .

Freeing a generation of storage makes any values represented in it undefined. A
program that attempts to access a freed generation is in error,

Freeing a generation of a controlled variable makes the previously allocated
generation the current generation. Refer toc Section 4 for a discussion of storage
classes and allocation. i)
Examples:

free x;

free y in(A);

12-18 AG94

12.14 The Get Statement

Syntax:
<get statement>::= [<prefix>]get{<file get>|<string get>};
{file get>::= <file get option>...

<file get option>::z <file option>!<copy option)!
<skip option>|<get list specification>

<file option>::=z file(<reference>)

{copy option>::= copy[(<reference>)]

<{skip option>::=z skip{(<expression>)]

<get list specification>::= <{get list>|<get data>i<get edit>
{get list>::= list(<get item>[,<get item>]...)

{get item>::= <target>|(<get itemd>[,<get item>]...<list do>)
<list do>::= <multiple do> | ’

{target>::= <reference)|<pseudo=-variable>

<get data>::= data((<get data ref>[,<get data ref>]...)]

{get data ref>::= <simple reference)>!
{structure qualified reference>

<get edit>::= edit<get edit pair>...

<get edit pair>::= (<get item)[,<§et item>]...)
({format speecification list>

<string get>::= <{string get option>...

<{string get optiond>::= <string option>|<copy option>!
<get list specification>

<{string option>::= string(<expression>)
Constraints:

Evaluation of a <get item> or <get data ref> must yield a generation of storage
of an arithmetic or string variable. .

Evaluation of the <reference> in the {file option> or <copy option> must yield a
scalar file value.

Evaluation of the <string option> and <skip option> must yield scalar arithmetic
or string values.

A <file get> must contain either a <skip option> or a <get list specification>,
or both.

A <file get> cannot contain more than one <file option>, one <copy option>, one
<{skip option> and one <get list specification>.

A <string get> must have’exaétly one <string option> and exactly one <get list
specification> and may have one <copy option>.

A <{structure qualified reference> in a <get data ref> cannot contain any
<aubscript>s.

12=-19 AG94

A <get data ref> cannot identify a based variable, unless the variable was
declared with a <based attribute> that contained a <locator qualifier>.

A <get data ref> cannot identify a defined variable whose <base reference>
contains one or more <isub>s or asterisks.

If the <expression> in the <string option> is a <reference> to a variable,
execution of the <get statement)> cannot allocate, free or assign a value to the
generation of storage identified by the <reference>.

Note that if neither a <file option> nor a <string option> is given in a <{get
statement>, the compiler supplies a <file option> of the form:

file(sysin)

Also note that a <copy option> with no <reference> is given "sysprint" as its
<reference>. Refer to Section 5 for a discussion of the effect of these
compiler supplied options on the establishment of declarations.

Semantics:

If the <get statement> contains a <file option>, it is executed by performing
the following steps in the indicated order:

1. Evaluate the <file option> and any <skip option> or <copy option> in an
unspecified order. Let f denote the file-state block identified by the
value of the <file option>. Let cf denote the file-state block identified
by the value of the <copy option>.

Convert the value of the <skip option> to a fixed-point, binary, real,
integer, K. I the <expression)> is omitted from the <skip option>, 1let K
be one. '

2. If £ is closed, open it ag"described in paragraph 11.3. After f 1is open,
it must have the <stream attribute> and <input attribute>.

3. If cf is closed, open it as described in paragraph 11.3. After ¢f is open,
it must have the <stream attribute> and <output attribute>.

4, If the <skip option> is present, evaluate it as described for a <skip
format> in paragraph 12.12.

5. A {get list> is evaluated by performing the following steps in the
indicated order:

5a. Establish the next list item as described in step §. If the list item
is a scalar, consider it to be the next target. If the list item is
an aggregate, consider each of its scalar components to be a target
taking the elements of arrays in row-major order and the members of
structures in left-to-right order. For each scalar target, T, perform
steps 5b through 5d. -

5b. Scan the data stream to find the next non<space>. If the end of the
data stream is encountered, signal the endfile condition.

5c. Select the applicable case:
Case (the current character is a comma)
If the 1last operation on this file was the execution of a <{get

list> and its scan was stopped by a <space> go to step 5b;
otherwise, ignore this target.

12=-20 AG94

T7/78

Case

Case

(the current character is not a comma or a quote)

Scan to find the next <space> or comma, and let S be the string
of all characters scanned, except the <space> or comma that
stopped the scan. If the end of the data stream is encountered
during the scan, stop the scan but do not signal the endfile or
error condition.

Assign S to the target, T.
(the current character is a quote)

Scan to find the next single quote, and 1let 31 be the string of
all characters scanned, except linemarks. If the end of the datz
stream is encountered during the scan, signal the error
condition.

Scan to find the nekxt <space> or comma, and let S2 be the string
of all characters scanned, except the <space> or comma that
stopped the scan. If the end of the data stream is encountered
during the scan, stop the scan but do not signal the endfile or
error condition..

Let S be S1:182.

Select the applicable case:

Case (S does not satisfy the syntax for <valid field>)
Raise the conversion condition.

Case (S satisfies the syntax for <valid bit=-field>)
Let S' be the string S with the trailing <radix factor>
removed, the leading and trailing single quote removed, and
each contained double quote replaced by a single quote. Let
n be the length of S'.

If the <radix factor> is "b", let m be 1; otherwise, let m
‘ be the same as the number in the <radix factor>.

If S' 1is a null character-string, convert it to a null
bit-string, R; otherwise, convert it to R, where R is a
bit-string of length m¥*n. For “k=1,2,...,n, bits
k*m-m+1,...,k*m are obtained from the table in paragraph
2.6.2.1, If the kth character of S' is invalid, the
conversion condition occurs.

Assign the bit-string R to the target T.

12-21 AG94B

This page intentionally left blank

T/78

3/81

Case (S satisfies the syntax for <valid character-field>)
Let St be the string S with the leading and trailing single
quotes removed, and each contained double quote replaced by
a single quote.
Assign S' to thertargeg, T.

<valid field>::= <valid bit-field>|
<valid character-field>

<valid bit-field>::= <valid character-field><radix factor>
<radix factor>::z {bib1;b2!b3!b4}
{valid character-fieldd>::= "<{character>.,.”

<character>::= nn!
Any ASCII character except quote

<space>::= ASCII blankASCII tab!linemark

5d. After step 5c¢ 1is complete, the current character is the character

following the <space> or comma, unless the end of the data stream has
been reached. In the latter case, the end of the Stream will be
detected when the next scan is performed. The conversion or stringsize
condition can result from each conversion or assignment performed by
step Sc. Refer to Section 10.

12=21..1 AGYLUE.

6. A <get
order.

6a.

6b.

6ec.

6d.

Se.

data> is evaluated be performing the following steps in the indicated

Scan to the the next non<space>. If the end of the data stream is
encountered during the scan, signal the endfile condition. If the
current character is a comma, repeat the step. If the current character
is a semicolon, transfer control to the <{statement> following the <get
statement>. If the current character is an equals, let N be a null
string and go to step 6ec.

Scan to find the next equals or semicolon. If the end of the data
Stream is encountered during the scan, signal the error condition. If
the scan was stopped by a semicolon, transfer control to the <statement)
following the <get statement>; otherwise, let N be the string of all
characters scanned, except linemarks and the equals that stopped the
scan.

Scan to find the next non<space>. If the end of the data stream is
encountered during the scan, signal the error condition. Let S3 be
the string of all characters scanned, except linemarks.

Modify the scanning rules described in step S5c¢ so that where they scan
to find a comma or <space>, they now scan to find a semicolon, comma,
or <space>. Scan using the modified step 5S¢ to obtain a string S. Do
not perform the assignments to T described in step Sc.

If N does not satisfy the syntax for <stream reference>, or if N
cannot be resolved such that it identifies a variable whose scope of
declaration includes the <get statement>, or if N is improperly
subscripted, signal the name condition with (N}im="]i{S3/iS) as the
value of the "onfield™ built-in function. Refer to paragraph 10.4 and
13.5 N may contain <spaced>s between any of the <lexeme>s of <stream
reference>, just as if <stream reference> were written in the text of
an <external procedure>.

<{stream reference>::= [<identifier>[<subs>].]...
{identifier>[<subs>]

<{subs>::z ([+{-]<decimal integer>
[,{+i-]<decimal integer>]...)

Let T be the variable identified by N. Assign S to T using the appropriate
assignment rule from step Sc.

If the last character scanned was a semicolon, transfer control to the
<{statement> following the <get statement>; otherwise, go to step 6a.

T. A <get edit> is evaluated be performing the following:

Ta.

Tb.

Te.

For each <get edit paird> taken from left-to-right, perform steps 7b
and Tc. Wnen the last <get edit pair> has been evaluated, transfer
control to the <statement> following the <get statement>.

Establish the next list item as as described in step 8. If the list
item is a scalar, consider it to be the next target. If the list item
i3 an aggregate, consider each of its scalar components to be a target
taking the elements of arrays in row-major order and the members of
structures in left-to-right order.

For each target, pass control to the to the <format specification
list>. The evaluation of the <format specification list> causes the
data stream to be scanned and a value assigned to the target. Refer
to paragraph 12.12 for a description of the evaluation of a {format
specification list).

12-22 AG9Y

8. To evaluate a <get list> or <{get edit> to obtain the next list item perform
the following steps in the indicated order-

da. If there is no current <get item>, let the current <get item> be the
leftmost <get item>; otherwise, let the current <get item> be the next
{get item>. If no more <get item>s remain, transfer control to the
<{statement> following the <get statement>.

8b. If the current {get item> is a <target>, evaluate the <target> as ir
it were the <target> of an <assignment statement> and make the
evaluated <target> the current list item.

8c. If the current <get item> is a parenthesized list of <get item>s
containing a <list do>, consider the entire construct to be a do group
of the form:

<multiple do><get item>[,<get item>]...end;

Evaluate the do group as if it were a true <group>. Each <get item>
is evaluated by performing step 8b or 8c. When control reaches the
end of the <group>, evaluate the next <get item>. ’

Each ASCII tab character encountered during scanning of the data stream sets
columnposition to the next higher value in the sequence: 11,21,31,...

Each linemark encountered during scanning of the data stream sets cclumnposition
to one.

If a pagemark or carriage return character appears. in an input stream, it is
ignored.

During execution of a {get statement> coentaining a <copy option>, all characters
and linemarks in the input data stream, from the first to the last character or
linemark scanned, are: placed into the copy data stream attached to ef.

The copy

Cop

da am is 3 normal ocutput stream and behaves as such with respect
to linemark

ta stre

s, linesize, linenumber, etec.

If* the <get statement> contains a <string option>, it is executed by performing
the following:

Evaluate the <string option> and the <copy option> in an unspecified order.
Convert the value of the {string option> to a character-string and let the
character-string value be the data stream. For purposes of evaluating the
<get list specification>, consider columnposition to be defined with an
initial value of one. .

Let ef be the file-state bloek identified by the value of the <copy
option>. If of is closed, open it as described in paragraph 11.3. After
ef 1is opened it must have the <stream attribute> and the <output
attribute>.

Evaluate the <get list specification)> as described in steps 5, 6 or 7. If
this evaluation would signal the name or endfile conditions, the error
condition is signalled instead of the name or endfile condition. The value
of "onfield" is not set when the error condition is signalled instead of
the name condition.

Example:

get file(Input) skip 1ist(A,B,C,(X(i) do i = 1 to 10),D);
Execution of this <statement> causes. the data stream identified by "Input™ to be
advanced past the next linemark; three values are obtained and assigned to 4, B

and C; the: <list do> is evaluated and ten values are obtained and assigned ¢to
X(1),X(2),...,X(10); finally a: value is: obtained and assigned to D.

12-23 . 4G94

Example:
get string(S) edit(A) (p"zzzv9g");

Execution of this <statement> evaluates S and converts it to a character-string.
The converted value is then encoded to an arithmetic value under control of the
<{picture>, and the encoded value is then assigned to A.

Example:
get file(F) data;

Execution of this <statement> advances the data stream identified by F and may
assign values to any variable whose scope of declaration includes this
{statement>. The assignment only occurs if the data stream contains "X = v,
where X is a reference to the variable and V is a constant. This <statement> is
extremely expensive because it causes a large symbol table to be included into
the compiled program. Use of the <{statement> is a poor programming practice
because one cannot tell by reading the <statement> what effeect its execution has
on the state of the executing program.

Example:

get data(X,Y,Z);
Execution of this <statement> advances the data stream identified by "sysin" and
may assign values to X,Y, or Z, or any combination of X, ¥ and Z. This

<statement> is not quite as expensive or dangerous as the previous example, but
it is to be avoided if "get list(X,¥,Z)" could be used instead.

12.15 1Ihe Goto Statement

Syntax:
<{goto statement>::= [<prefix>]{goto!go tol<reference>:
Constraint:

Evaluation of the <reference> must yield a scalar label value whose block
activation pointer identifies the curremt block activation record or the
activation record of a dynamic predecessor of the current block activation.
Refer to paragraph 3.3.1 for a discussion of block activatiom.

Semanties:

If the label value identifies a <statement> within the current block activation,
control transfers to that <{statement)>.

If the label value identifies a <statement> within a block activation that is a
dynamic predecessor of the current block activation, the current block
activation and all predecessors up to, but not ineluding the bloek activation
identified by the label value are terminated. The block activation identified
by the label value then becomes the current block activation and control
transfers to the <statement> identified by the label value.

If the block activation identified by the label value is no longer active, the
program is in error and the results of continued execution are undefined.

Example:

goto L(2);

12-24 AGOL

12.16 The_ If Statement

Syntax:

<if statement>::= [<prefix>]if<expression><then clause>
[<else clause>]

{then clause>::= then<executable unit>
<else clause>::= else<executable unit>

<executable unit>::= <independent statement>|<group>|
<begin block>

Constraints:
Evaluation of the <expression> must yield a sealar arithmetic or string value.

Note that the scope of the <condition prefix> of an <if statement> does not
include its <executable unitds. Each <executable unit> may have its own
{prefix>.

Semanties:

An <if statement> is executed by performing the following: Evaluate the
<{expression> and convert its value to a bit-string B. If any bit of B is a 1,
execute the <then clause>; otherwise, execute the <else clause> if it is
present. In all cases, pass control to the {statement> following the <if
statement>.

Note that the syntax rules do not show the pairwise relationship between "then"
and "else™ keywords. An <{else clause> is always paired with the preceding <then
clause>. .

Examples:

ifx<¥Y
then if a=b
then return;
else go to L;

In this example, the <else clause) belongs to the second <if statement>. If it
is to belong to the first <if statement>, it must be written as:

it X<y
then if a=b
then return;
else;

else go to L;

The <null statement> is used as the <executable unit> of the first <else clause>
to produce the desired effect.

12
(X'

17 ™ r SEa i
.17 Ihe Locate Statement

Syntax:

{locate statement>::= [<prefix>]locate<allocation reference>
<locate option>...;

{allocation referenced::= <identifier>

<locate option>::= <file option>|<set option>|
<keyfrom option>:

12-25 AG94

{file option>::= file(<reference))
<set option>::z set(<reference))

<keyfrom option>::= keyfrom(<expression))

Constraints:

No <locate option> may appear more than once and the <file option> must be
present. .

Evaluation of the <reference> in the <file option> must yield a scalar file
value.

Evaluation of the <reference> in the <set option> must yield a generation of
storage of a scalar pointer variable.

Evaluation of the <keyfrom option> must yield a scalar arithmetic or string
value.

The <allocation reference> must identify a level-one based variable.

If the <set option> is omitted, the variable identified by the <allocation
reference> must have been declared with a <based attribute> that contained a
<{locator qualifier>. That <locator qualifier> is taken as the <set option> and
must satisfy the constraints of the <set option>.

Semantics:

A <locate statement> is executed by performing the following steps in the
indicated order:

1. Evaluate the <locate oﬁfion)s and the <allocation reference> in an
unspecified order.

Let £ denote the file-state block identified by the value of the <file
option>.

If £ is not open, open it as described in paragraph 11.3. After f 1is
opened, it must have the <record attribute> and either the <output
attribute> or the <update attribute>. If the <keyfrom option> was
specified, f must have the <keyed attribute>, and if f has the <keyed
attribute> the <keyfrom option> must be specified.

2. If there is an output buffer associated with f, create a new record in the
data set and write the content of the buffer as the value of the new
record. If there is an evaluated key associated with the buffer, it is
associated with the new record as its key. If any record in the data set
already has this key, signal the key condition. If currentrecord 1is not
null, and £ has both the <keyed attribute> and the <sequential attribute>,
and the key is not greater than the key of the record designated by
currentrecord, signal the key condition.

If f has the <keyed attribute>, create the new record in its proper
position within the data set as determined by its key; otherwise, append
the new record to the end of the data set. After the record is written,
free the buffer and set currentrecord to designate the new record.

3. Allocate a generation of storage for the variable identified by the
<allocation reference> by executing an <allocate statement> of the form:

allocate x set(p);

where x 1is the variable identified by the <allocation reference> and p is
the pointer given in the <set option>. Associate this generation of storage
with f as its output buffer. Only the execution of another output
operation on f or the closing of f causes the buffer to be written into the
data set as a new record.

12-26 AG9Y4

4. If f has the <keyed attribute>,
to a character-string and assccia

Examples:

locate X set(p) file(f);
p=>X = T;

locate X set(p) file(f);
p=>X = 10;

close file(f);

convert the value of the <keyfrom option>
te it with the output buffer as its key.

This example writes two records into the data set attached to f. The first

contains a 7 and the second contains a 10.
until the second <locate statement> is execut
written until the <close statement> is executed

12.18 The Null Statement

Syntax:

<null statementd>::= [<prefix>];

Semantics:

Execution of a <null statement> has no effect on the program.
as a convenient way of writing an <else clause) or <on u

action.

The first record is not written
ed and the second record is not

It is used primarily
nit> that takes no

Note that a label value identifying a <null statement> does not compare equal to

a label value identifying any other <{statement>.

Examples:
on endpage(f);

iffa=0»
then if'ec = b
then go to L1;
else;
else go to L25 .

12.19 The On Statement

Syntax:

<on statement>::= [<prefix>]on<condition list>{snapl<on unit>

<on unit>::= <independent statement>[<begin blockd>!system;

<econdition listd>::= <condition name>{,<condition name>]...

Each <condition name> is one of the {condition name>s given in paragraph 10.4.

Constraints:

An <on unit> consisting of an <independent statement> cann
{on statement>, <revert statement>, or <return statement

ot be an <if statement>,

An <on unit> consisting of a <begin block> cannot have a <return statement>

contained within the <begin block>
contained within the <begin block>.

11/7T

12-27

y unless it is contained within a {procedure>

AG94A

An <independent statement> or <begin block> used as an <on unit> cannot have a
<label prefix>.

Note that the scope of a <condition prefix> on an <on staﬁement) does not include
the <on unit>,

Semantics:
The <on unit) is effectively translated into a <{procedure> of the form:

P: procedure; <on unit)> end;
where P is a unique name created by the compiler. The <condition name>s in the
<condition list> are evaluated in an unspecified order. For each condition
identified by the <condition list>, execution of an <on statement> causes the
{procedure> P to be established as the current <on unitd> for.this condition. If
this block activation has previously established an <on unit> for this condition,
the previously established <on unit)> is reverted.
When the condition identified by the <condition name> is signalled, the most
recently established <om unit> for that condition is executed. The signal is
effectively a call to the <procedure> P.

- If the keyword "snap" is given, a Multics debugging command is called just prior
to the invocation of the <on unitd. In an interactive process, the Multics
probe command is called. In an absentee process, the Multics trace_stack command
is called. Refer to the Multics PL/I Reference Manual.

If the <om unit> consists of the keyword "system”, the default <on unit> for the
condition is considered to be the <on unit> of this {statement>,

Refer to Section 10 for a full discussion of conditions, signals and <on unit>s.
Example:

on endpage(f) put. page list("Page Header");

12.20 The Open Statement

'Syntax:
{open statement>::= [<prerix>]open<opening>[,<opening>]...;
<opening>::= <opening optiond>...
<opening option>::z <file option>!<title optiond>|
<linesize option>|<{pagesize option>|
<opening attribute)
<opening attribute>::= <input attribute>|<output attributed!
{update attribute>|<record attribute>!
{stream attribute>|<print attribute>!
<direct attribute)]<sequential attribute>!
<keyed attribute>!<environment attribute>
{file optiond>::= file(<reference))
<title optiomn>::= title(<expression>)
<linesize option>::= linesize(<expression>)
{pagesize optiond>::= pagesize(<expression>)
Constraints:

Evaluation of the <reference> in each <file option> must yield a scalar file
value.

3/81 12-28 AGY4E

Evaluation of the <expression> in a {pagesize option>, <linesize option>, or
{title option> must yield a scalar arithmetic or string value.

Each <opening> can contain only one <file option>, one <title option>, one
<pagesize option> and one <linesize option>. It may contain any number of
{opening attributed>s. '
Each <opening> must contain a <file option>.

Semantics:

An <open statement> is executed by evaluating its <opening>s from left-to-right.
For each <opening> perform the following steps in the indicated order:

1. Evaluate the <file option> and any <title option>, <linesize option> and
{pagesize option> in an unspecified order.

Let f denote the file-state block identified by the value of the <file
option>,

If a <title option> is specified, convert its value to a character-string.
If a <pagesize option> or <linesize aption> is specified, convert their

values to fixed-point, binary, real values of precision (17,0).

2. If f 1is already open, perform no further action for this <opening>;
otherwise, open f as described in paragraph 11.3.
Examples:

open file(f) pagesize(20) linesize(80)
title("vfile. >udd>databased>myfile");

open file(messages) keyed update record;

ile(g) input stream environment(interactive);

[s)

L]

1]

o)

-y

ile(f), file(g);

o
el
o
3
o]

12.21 The Procedure Statement'

Syntax:

<{procedure statement>::=[<condition prefix>]...<label prefix>...
{procedureiproc}[([<parameter list>])](<procedure option>]...;

{procedure option>::z <returns attribute))recursive!
<reducible attribute>i<irreducible attribute>!<options attribute>

{parameter list>::= <identifier>[,<identifier>]...
Constraints:

Each <identifier> in the <parameter list> must identify a level-one variable
declared in the <{procedure> headed by this <procedure statement>.

No <label prefix> can contain a <prefix subscript>.

If control passes to the <procedure statement> by the execution of a <ecall
statement>, the <procedure statement> cannot have a <returns attribute>.

1f control passes to the <procedure statement> by the evaluation of a <function
referenced>, the <{procedure statement? must have a <returns attribute).

T/78 12-29 AGI9uUB

The number of <identifier>s in the <parameter 1list> must equal the number of
{expression>s in the <argument 1list> of the <call statement> or <function
reference> that invoked this entry.

A <procedure statement> cannot contain both a <reducible attribute> and an
{irreducible attribute>.

A <procedure statement> containing a <returns attribute> must have exactly one
{returns attribute> with a <returns deseriptor>.

The <options attribute> may not specify the keyword "constant"™. The {options
attribute> may specify "support"”, "separate_static", or "packed_decimal" only if
the <procedure statement> heads an <{external procedure>. The <options
attribute> may specify "main" only if the <procedure statementd> heads an
{external procedure> and does not contain a <returns attribute).

Semantics:

A <procedure statement> heads a <procedure> and denotes an entry to the
{procedure>. When control is transferred to the entry by the evaluation of a
{function reference> or the execution of a <call statement>, a new block
activation of the {procedure> occurs and the arguments of the <function
reference> or <call statement> are associated with the parameters in the
{parameter 1list>. Refer to paragraph 3.6.2 for a discussion of <procedure>
activation and refer to paragraph 6.10 for a deseription of arguments and
parameters.

If control reaches a <procedure statement> as a result of completing the
execution of the preceding <statement), control 1is transferred to the
{statement> following the <end statement)> that ends the {procedure>,

Because the <label prefix> of a <procedure statement> results in the declaration
of an entry constant rather than a label constant, a <goto statement> can never
transfer control to a <{procedure statement).

Standard PL/I requires that recursive {procedure>s contain the keyword
"recursive™ in their {procedure statement>. Multies PL/I considers all
{procedure>s recursive. For compatibility with standard PL/I, it accepts the
kevword. ’
Example:

P: procedure(A,B,C) returns(pointer);
In this example, P is an entry to the <procedure> headed by the <procedure

statement>. Invocation of P results in a pointer value. The entry requires
three arguments that are associated with the parameters A, B, and C.

12.22 The Put Statement

Syntax:
<put statementd>::= [<prefix>]put{<file put>i<string putd};
{file putd>::= <file put optiond...

<file put optiond>::= <file option>{<skip option>|
<line optioni<page option>|<put list specification)

<file option>::= file(<reference))
<{skip option>::= skip[(<expression>)]
<line option>::= line(<expression))

{page option>::= page !

T7/79 12-30 AG94C

<put list specificationd::= <put 1list>i<put data>|<put edit>
<put list>::= list(<put item>[,<put item>]...)

<put item>::= <expression)>|
(<put item>[,<put item>]...<list do>)

<list do>::= <multiple do>
<put data>::= data[(<put data item>(,<put data item>]...)]

<put data item>::= <referenced!
(<put data item>[,<put data item>]...<list do>)

<put editd>::= edit<lput edit pair>,_ ..

<put edit pair>::=z (<put item>[,<put item>]...)
({format specification listd>)

{string put>::= {string option><put list specification>|
<put list specification><string option)>

<string optiond>::= string({<reference>|<pseudo-variable>})
Constraints:
Evaluation of a <put item> or <{put data item> must yield an arithmetic or string
value. (As a nonstandard extension, evaluation of a <put item> or <put data
item> may yield any type of value except an area value unless the item is
contained in a <put edit pair>.)

Evaluation of the <reference> in the <file option> must yield a scalar file
value.

Evaluation of the <expression> inm a <{line- option> or <skip option> must yield a
scalar arithmetic or string value.

Evaluation of the <string option> must yield a generation of storage of a scalar
character-string variable.

- Evaluation of a <put data item> or a <put item> must not identify the same
generation of storage as the {string option>.

A <put data item> cannot identify a defined variable whose <base reference)
contains. one or more <isub>s or asterisks.

If the <skip option> is given in a <file put>, the: <line option> or {page
option> cannot also be given.

Note that if neither 3 <file option> nor a <string option> is given, the
compiler supplies a <file option> of the form:

file(sysprint)

Refer to Section 5 for a discussion of the effect of this compiler-supplied
option on the establishment of declarations,

Semantics:
In the following steps, the phrase "place a linemark into the data stream"
includes the action of incrementing linenumber by one and setting columnposition

to one as if a <skip format> were being evaluated at that point. The
<skip format> is described in paragraph 12, 12.

1"/77 _ 12=37 AG94A:

If the <put statement> contains a <file option>, it is executed by performing
the following steps in the indicated order:

1.

Evaluate the <expression>s or <reference>s immediately contained in the
<file option>, <skip option> and <line option> in an unspecified order.

Let f denote the file-state block identified by the value of the <file
option>.

Convert the value of the <skip option> to a fixed-point, binary, integer,
k. If the <expression> is omitted from the <skip option>, let k be one.

Convert the value of the <line option> to a fixed-point, binary, integer,
J.

If f is closed, open it as described in paragraph 11.3. After f is open,
it must have the <stream attribute> and <output attribute>. If the <{page
option> or the <line option> is given, f must have the <print attribute>.

Evaluate any <page option>, <line option>, or <skip option> as if it were a
<{page format>, <line format)>, or <skip format> as described in paragraph
12.12. If both a <page option> and a <line option> are given, the <(page
option> is evaluated before the <line optiony.

If £ has an <environment attribute> specifying "interactive", place a
linemark into the data stream after the <put list specification> has been
evaluated.

A <put list> is evaluated by performing the following steps in the
indicated order:

5a. Establish the next list item as described in step 8. If the list item
is a scalar, consider it to be the next output value. If the 1list
item is an aggregate, consider each of its scalar components to be an
output value, taking the elements of arrays in row-major order and the
members of structures in left-to-right order. For each scalar output
value, perform steps Sb through Sf.

Sb. If the output value is an arithmetic or string value, convert it to a
character-string according to the conversion rules given in Section 8.
Ctherwise, convert the output value to a character-string by using a
nonstandard Multics routine., Let S be the converted character-string
value.

If the original ocutput value was a bit-string, enclose S in quote
characters and append a "b" to the end of §S.

If the original output value was a character-string, including a
pictured character-string, and f does not have the <print attribute>,
enclose S in quote characters and replace each contained quote by a
pair of quotes; otherwise, do not modify S.

Let S' be the final converted value to be output and let n be the
length of S'.

5¢. If f has the <print attribute)> and columnposition is not one or a
multiple of ten plus one, place an ASCII tab character into the data
stream and set columnposition to the next higher value in the sequence
11,21,31,..., unless this action would cause columnposition to exceed
linesize; in that case, place a linemark into the data stream.

5d.. If n>(linesize-columnposition+1) & columnposition®z1, place a linemark
into the data stream.

Se. Place S' into the data stream using linemarks to split S', when
necessary, as described for <{data format)> output in paragraph 12.12.

5f. Place a single blank into the data stream.

nnr 12-32 ‘ AG94A.

6. A <put data> is evaluated by performing the following steps in the
indicated order:

6a. If the <put datad> has no <put data item>s, create a list of <put data
item>s containing a <reference> to every level-one variable whose
scope of declaration includes the <put statement>, but exclude any
variables that violate one or more of the constraints given above,
The order of the <put data item>s in the list is unspecified,.

6b. Establish the next list item as desecribed in step 8. If the list item
is a scalar, consider it to be the next output value. -~ If the 1list
item 1is an aggregate, consider each of its scalar components to be an
output value, taking the elements of arrays in row-major order and the
members of structures in left-to-right order. For sach scalar cutput
value, perform steps 6c. through 6i,.

6c. Form the character-string representation of a fully qualified
{reference> to the output value with each <subscript> written as a
<decimal integer> with an optional minus sign. The <reference>
contains a single optional <{subscript list> following the rightmost
{identifier>, and contains no blanks.

Examples:
S.A.B(1,4,-2)
X(5)
W.Q
R

6d. If f has the <print attribute) and columnposition is not one or a
multiple of ten plus one, place an ASCII tab character into the data
stream and. set columnposition to the next higher- value in the sequence
11,21,31,..., unless this action would cause columnposition to exceed
linesize. 1In that case place a linemark into the data stream.

6e. Let R be the character-string formed in step 6c. Form a
character—stripg S consisting of: :

bimem

Let V be the character-string representation of the list item, as it

would be produced by execution of a {put 1list> for a file not

containing the <print attribute)>. Let n be the length of S, and let m

be the length of V.

6f. If n>(linesize-columnposition+1) & columnposition™=1, place a linemark
into the data stream.

6g. Place S into the data stream using linemarks to split S, when
necessary, as described for <data format> output in paragraph 12.12.

6h, If m>(linesiie-columnposition+1) & columnpositiont=z1, place a linemark
into the data stream..

6i. Place V into the data stream using linemarks to split V, when
necessary, as described for <data format> output in paragraph 12.12.

6j. If this is the last scalar output value to be output by this execution
of the <put statement>, place a semicolon into the data stream;
otherwise, place a single blank into the data stream.
T. A <put edit> is evaluated by performing the following:
Establish the next list item: as described in step 8. If the list item is a

scalar, consider it to be the next output value. If the list item is an
aggregate, consider each of its scalar components to be an output value,

177 12«33 AG94A:

taking the elements of arrays in row major order and the member o
Structures in left-to-right order. For each output value pass control t¢
the <format specification list>. The evaluation of a {format specificatiot
list> causes the output value to be converted and placed 1into the dat:
stream. Refer to paragraph 12.12 for a description of the evaluation of :
<{format specification list>.

8. To evaluate a <put list>, <put data)> or {put edit> to obtain the next 1list
item, perform the following steps in the indicated order:

8a. If there is no current <put item>, let the current <put item> be the
leftmost <put item> or <put data item>; otherwise, let the current
<put item> be the next {put item> or <put data item>. If no <put
item>s or <put data item>s remain, transfer control to the {statement>
following the <put statement).

8b. If the current <put item> is an {expression> or {reference>, evaluate
it to obtain its value. Let the obtained value be the current list
item.

8c. If the current <put item> is a parenthesized list of {put item>s or a

parenthesized 1list of <put data item>s, consider the entire construct
to be a do group of the form:

<multiple do><put item>[,<put item>]...end;

" Evaluate the do group as if it were a true <group>. Evaluate each
<{put item> by performing steps 8b or 8§ec. When control reaches the end
of the <group>, evaluate the next <put item> or <put data item).

If the <put statement> contains a {string option>, it is executed by performing
the following: .

Evaluate the <string option> as if it were the {target> of an <assignment
statement>. The evaluation must yield a generation of storage of a scalar
character-string variable.

Let the generation of storage yielded by evaluation of the {string option>
be the data stream, S. For purposes of evaluating the <put 1list
specification>, consider columnposition to he defined with an initisl value
of one, and consider linesize to be defined with an initial value that is
the length extent associated with the generation of storage of S.

Evaluate the <put list specification> as described by steps 6, 7 and 8.

When the last output value has been placed into the data stream by this
{put statement>, the current length of S 1is defined as n, where n is
columnposition-1. Let m be the length of the generation of S. If n<m and
S is nonvarying, m-n blanks are used to fill the remaining characters of §S.
If S is varying and n{m, the current length of S is defined as n. If nom,
the error condition is signalled before the (m+1)th character 1is placed
into the data stream.

Example:

put file(f) page list(A,B,C,(X(i) do i=1 to 10),D);
Execution of this <statement)> causes the data stream identified by f to cont#in
a pagemark; followed by the values of A, B and C; followed by the values of
X(1), X(2),...,X(10); followed by the valie of D. Each value begins on a

columnposition that is a multiple of ten plus one. Linemarks are inserted to
Split the stream into lines of linesize characters each.

12=34 AG94

Example:

put string(s) edit(A,B)(a(!O),p"99V§9*);
Execution of this. <statement) causes the values of A and B to be converted to
character-strings under control of the {format specification 1list). The
resulting string of 14 characters is the new value of S.
Example:

put file(F)'data;

Execution of this <statement)> causes the value of every level-one variable whose
scope of declaration includes the <put statement> to be output into the data
Sstream identified by F. Each value has the form X=VH¥ except the last which has
the form has XzV; where X is a <reference> to the variable whose value is given
by V. This <statement) is extremely expensive because it causes a large symbol
table to be included into the compiled program.

Example:
put data(4,B(I),C);

Execution of this <statement> causes the following to be placed into the data
Stream identified by "sysprint",

A=5SBBBEBEBB(10) =28BBC=7;

where 5 is the current value of A, 2 is the current value of B(I), 10 1is the
current value of I, and 7 is the current value of C.

12.23 The Read Statement

"

Syntax:
{read statement>::= £<prefix>]read<read~option)...;
{read option>:::‘<file‘cption>:<receiver>:<key spec)>
<fileﬂoption>:':»file((reference>)

{receiver>::z <into option>|<set optibn){(ignore option>
{into option>::= into(<reference))
{set option>::= set (<reference>)
{ignore optiond>::= ignore(<expression>)
<{key spec>::= <key option>|{<keyto option>
<key option>::= key(<expression))
<keyto option>::= keyto(<reference))
Constraints:

Evaluation of the <reference> in the <file option> must yield a scalar file
value. .

Evaluation of an <into option> must yield a generation of connected storage.

Evaluation of a <set option> must yield a generation of storage of a secalar
pointer variable.

12=-35 AG94

Evaluation of an <ignore option> or <key option> must yield a scalar arithmeti:
or string value. ' ’

Evaluation of a <keyto option> must yield a generation of storage of a scala:
character-string variable.

A <read statement> must contain exactly one <file option> and exactly on!
{receiver>,

A <read statement> can contain only one <key spec>, but if the <receiver> is ar
<{ignore option>, the <read statement> cannot have a <key spec>.

Semantics:

A <read statement> is executed by performing the following steps in the
indicated order:

1. Evaluate all <read option>s in an unspecified order.

Let f denote the file-state block identified by the value of the <file
option>,

Convert the value of the <expression> in the <key option> to
character-string. ’

m

Convert the value of the <expression> in the <ignore option> to =&
fixed-point, binary, integer, k. The converted value, k, must be greater
than zero.

2. If f is closed, open it as described in paragraph 11.3. After f is open,
it must have the <input attribute> or the <update attribute>. If f has the
{stream attribute>, go to step 10. Otherwise, if a <key option> is given,
f must have the <keyed attribute>, and if f has the <direct attribute>, a
<key option> must be given.

3. Free any input buffer associated with f. This circumstance occurs when the
previous input operation on f was the execution of a <read statement)
containing a <set option>.

4., If an <ignore option> is specified, set currentrecord to designate the
{(k=1)th record following the record designated by nextrecord. Signal the
endfile condition if the value of k would position currentrecord off the

end of the data set.

If a <key option> is specified, set the currentrecord of f to designate the
record identified by the converted value of the <expression> in the <key
opticn>. If ne such record exists in the data set attached to f, signal
the key condition. ’

If no <key option> or <ignore optiond> is specified, set currentrecord to
the value of nextrecord. If nextrecord is null, signal the endfile
condition. :

5. If f has the <sequential attribute>, set nextrecord to designate the record
following the new current record. If there is no next record, set
nextrecord null. '

6. If a <keyto option> is specified, assign the key associated with the

current record to the variable identified by the <reference> given in the
<keyto optiond>.

"WIT 12-36 AGO4A

1.

12.

13.

If an <into option> is specified, assign a copy of the current record to
the variable identified by the <into option>, If the file-state block has
an <environment attribute> specifying "stringvalue", and the variable, X,
referenced by the <into option> is a Scalar variable with the <varying
attribute>, perform the assignment by executing an assignment statement of
the form:

X = R;

where R is the record treated as stringvalue.. If this assignment would
raise the <stringsize condition>, raise <record condition> instead.
Otherwise perform the assignment by executing an <assignment statement> of
the form:

nspee(X) = unspec{R);

Where X is the variable referenced by the <into option> and R is the
record. ' -

If length(unspec(R))‘=1ength(unspec(X)), signal the record condition. On
return from the <on unit>, complete the assignment as if the length of R
and the length of X were the minimum of the lengths of X and R.

If a <set option> is specified, allocate a generation of storage of
sufficient size to hold a copy of the -current record in "system storage"
and associate the generation with f as its input buffer. Assign a copy of
the current record to this buffer and assign a pointer value identifying
the record in the buffer to the generation of storage identified by the
{reference> given in the <set option>,

Transfer control to the <{statement)> following the <read statement>.

The <read statement> must not contain a <key spec> and must contain an
{into option> which contains a {reference> to a scalar character-string
variable. _

e
If the data stream is positioned at the end of the data stream, signal the
endfile condition.

Scan to find the next linemark, and let S be the string of all characters
scanned, except the linemark that stopped the scan. If the end of the data
stream is encountered during the scan, stop the scan but do not signal the
endfile or error condition. Otherwise, position the data stream to the
character following the linemark and set columnposition to 1, -

Let T be the character-string variable referenced by the <into option>.
Assign S to T. 1If this assignment would raise the <stringsize condition>,
raise <record condition> instead. :

Examples:

read: file(f) into(X);

read file(g) set(p);

read file(s) ignore(n);

read file(h) key(r) into(x);
read file(f) set(p) keyto(y);

11/7T 12=3T AGINA:

This page intentionally left blank.

"7 AG94A

12.24 The Return Statement

Syntax:
Creturn statement>::= [<prefix>]return((<return value>)];
{return valued>::= <expression>

Constraint:

If the <return value> is omitted, the current procedure block activation must
have been created by the execution of a <call statement>. If the {return value>
is present, the current procedure block activation must have been created by the
evaluation of a <function reference>.

Semantics:

If the program is executing within a run unit, and. the current procedure block
activation is the first activation of a {procedure> headed by a <procedure
statement> containing an <options attribute> specifying the keyword "main", the
effect is as if a <stop statement> had been executed.

If the <return value> is omitted, a <return statement> is executed by
terminating the current procedure block activation and transferring control to
the <statement> following the <call statement> whose execution created the
current procedure block activation. The preceding block activation is the new
current block activation.

If the <return value> is present, a <return statement> is executed by evaluating
the: <return value> and promoting 1its value to conform to the aggregate type
specified 1in the <returns attribute> of the {entry statement> or <procedure
statement> used to enter the current procedure block activation. The promoted
value 1is converted to conform to the data type specified in the <returns
attribute>. The promoted and converted value 1is the value of the <function
reference> whose evaluatiom created the current procedure block activation. The
current procedure block activation is terminated and control returns to continue
evaluation of the {statement> containing the {function reference). The
preceding block activation is the new current bloeck activation.

Refer to paragraph 3.3.1 for a discussion of block activation and to paragraphs
8 and 9 for discussions of conversion and promotion.

Examples:
return;

return(a+b);

T/78 12=-37 .1 AG94B:

12.25 The Revert Statement

Syntax:
{revert statement>::= [<prefix>]lrevert<condition list>;
<econdition list>::= <condition named>[,<condition name>]...’
Constraint:

Each <condition name> must be one of the <condition named>s given in paragraph
10.4,

Semantics:

A <revert statement> is executed by evaluating the <condition name>s in an
unspecified order. For each of the specified <condition name>s, revert the
associated <on unit> if it was established by the current block activation.
Refer to Section 10 for a full discussion of conditions.

Examples:

revert endpage(f);

revert underflow, overflow;

12.26 The Rewrite Statement

Syntax:
{rewrite statement>::= [<prefix>]rewrite(rewrite option>...;
{rewrite option>::= <file option>i<key option>!<from option>
<file option>::= file(<reference>)

P
FfiAandees = brawuls
[RS8 4 A I VS

ke key

ey
{from option>::= from(<referenced)
Constraints:

A <rewrite statement> must contain exactly one <file option> and cannot contain
more than one <key option> or more than one <from option>.

Evaluation of the <reference> in the <file option> must yield a scalar file
value.
Evaluation of the <key option> must yield a scalar arithmetic or string value.

Evaluation of the <from option> must yield a generation of connected storage.

T/78 12-38 AG94B

Seman

A K<r
indic

1.

Examp

12.27

Synta

tics:

ewrite statement> is executed by performing the following steps in the
ated order:

Evaluate the <rewrite option>s in an unspecified order.

Let f denote the file-state block identified by the value of the <file
option>.

Convert the value of the <expression> in the <key option> to a
character-string.

If f is closed, open it as. described in paragraph 11.3. After f is opened,
it must have the <update attribute>. If a <key option> is specified, f
must have the <keyed attribute>.

If a <key option> is specified, set the currentrecord of f to designate the
record identified by the converted value of the {key option>. If no such
record exists in the data set attached to f, signal the key condition.

If a <key option> 1is specified and f has the {sequential attribute>, set
nextrecord to designate the record following the new current record. If
there is no next record, set nextrecord null.

If no <key option> is specified, currentrecord must not be null.

If the file-state block has an {environment attribute> specifyin
"stringvalue", a <from option> is specified, and the variable, X,
referenced by the: <from option> 1is a scalar variable with the <varying
attribute>, then replace the record designated by the current record with a
string equal to the current value of X.

If & <from option)> is specified, and the preceding paragraph does not
apply, replace the record designated Dy currentrecord with a copy of the
variable identified by the <reference> in the <{from option>. 1If f does not
have the <keyed attribute) and the size of the variable is not equal to the
size of the record designated by currentrecord, signal the record
condition. If control returns from the <on unit>, transfer coatrol to the
{statement> following the <rewrite statement>. In that case, the record
designated by currentrecord remains unchanged.

If no <from option> is specified, there must be an input buffer associated
with f. This input buffer will be present only if the last input operation
on f was the execution of a <read statement> containing a <set option>.
When a <{from option> is not specified, replace the record designated by
currentrecord with a copy of the record in the input buffer.

les:

rewrite file(f) from(x);

rewrite file(g) from(x) key(y);

The Signal Statement -

X3

C(signal statement>::=z [<prefix>]signal<condition rame>;

Constraint:

The <
10.4.

T7/78

condition name> must be- one of the <condition name>s dzfined in paragraph

12-39 AG9sB

Semantics:

If detection of the condition identified by the <condition name)> is disabled,
transfer control to the <statement> following the {signal statement>; otherwise,
perform the following actions in the indicated order:

1. For the conditions 1listed below, stack the current values of their
associated built-in functions and assign the built-in function the default
value shown below.

Condition Builtin Function Value

conversion onsource null string
conversion onchar blank

name(f) onfield null string
key(f) onkey null string
*endfile(f) onkey" null string
*transmit (f) onkey null string
*record(f) onkey null string

* Only set to this value when f has the <keyed attribute>.

2. Signal the condition. A signal for condition, c, causes the most recently
established <on unit> for ¢ to be invoked as a <procedure>. Refer to
Section 10 for a full discussion of conditions and signals.

Examples:

signal condition(x);

signal zerodivide;

12.27a The Stop Statement

Syntax:
<{stop statement>::= [<prefix>]stop;
Semantics:

If the program is executing within a run unit, execution of the program is
terminated by performing the following steps:

1. Raise the <finish condition>.

2. Terminate all block activations.

3. Close all open files,

4. Terminate the run unit.
If tﬁe program is not executing within a run unit, the system condition
command_abort_ is signalled. The standard system action for command_abort_ is

to return control to the Multics command processor in such a way that the
remainder of the current command line is executed.

T/79 ' 12=40 AG94C

12.28 The Write Statement

Syntax:
<write statement>::= [<prefix>]write<write option>...;

<write option>::= <file option>|<from option>|
<keyfrom option>)

<file option>::= file(<reference))

{from option>::= from(<reference))

<keyfrom option>::= keyfrom(<expression>)
Constraints:

Evaluation of the <reference> in the <file option> must yield a scalar file
value.

Evaluation of the <expression> in the <keyfrom option> must yield a scalar
arithmetic or string value. :

Evaluation of the <from option> must yield a generation of connected storage.

A <write statement> must contain exactly one <file option> and exactly one <from
option>. It cannot contain more than one <keyfrom option>.

Semantics:

A <write statement> is executed by performing the following steps in the
indicated order:

1. Evaluate the <write option>s-in an unspecified order.

Let: f denote the file-state block identified by the value of the <file
option>.

Convert the wvalue of the {expression> in the <keyfrom option> to a
character-string.

2. If f is closed, open it as described in paragraph 11.3., After f is opened,
if it has the <stream attribute>, then go to step 9; otherwise, f must have
the <record attribute>. It cannot have the <input attribute>. If it has
the <update attribute>, it must also have the <keyed attribute>. If the
<keyfrom option> is specified, f must have the {keyed attribute>; if f has
the <keyed attributed>, the <keyfrom option> must be specified.

3. If an output buffer is associated with f, create a new record in the data
set and write the content of the buffer as the value of the new record. If
an evaluated key is associated with the buffer, associate it with the
record as its key. If any record in the data set already has this key,
signal the key condition.

If £ has the <keyed attribute>, create the new record in its proper
position within the data set as determined by its key; otherwise, append
the new record to the end of the data set.

"After the record is written, free the output buffer. An output buffer

exists when the previous output operation on f was the execution of a
<locate statement).

T/78 12-41 AGSUB

10.

1.

If the <keyfrom option> is specified and the data set already contains a
record whose associated key is the converted value of the <keyfrom option>,
signal the key condition. If currentrecord is not null, and f has both the
<keyed attribute> and the <sequential attribute>, and the converted value
of the <keyfrom option> 1is not greater than the key of the record
designated by currentrecord, signal the key condition.

If £ has the <keyed attribute>, create the new record in its proper
position within the data set as determined by its key; otherwise, append
the new record to the end of the data set. If the variable, X, referenced
by the <from option> is a scalar variable with the {varying attribute>, and
if the file-state block has an {environment attribute> specifying
"stringvalue”, the record is a string equal to the current value of X
Otherwise, the record is a copy of the content of the generation identified
by the evaluated <from option>.

Associate the converted value of the <keyfrom option> with the new record
as its key.

Set currentrecord to designate the new record and set nextrecord to
designate the record following the new record if one exists. 1If no such
record exists, set nextrecord null.

Transfer control to the <{statement> following the <write statement).

f must have the <output attribute>. The <write statement> must not have a
<keyfrom option> and must have a <from option> that references a scalar
character-string variable.

Let the variable referenced by the <from option> be S. If
length(S)<zlinesize-columnposition+1, place the value of S into the data
stream; otherwise, signal the <record condition>. Upon return from the
<on unit>, place substr(3,1,linesize-columnposition+1) 1into the data
stream.

e

Place one linemark into the data stream, set columnposition to one, and add
one to linenumber. If linenumber = pagesize+1, then signal the
<endpage condition>.

Examples:

T7/78

write file(f) from(x) keyfrom(y);

write file(g) from(x);

12-42 AG94B

The
language.

functions

Functions
supported by Multiecs
are grouped into six classes.

described
marked
PL/I.

SECTION 13

BUILT-IN

in this

with + are
For descriptive

1. String Built-in Functions.

FUNCTIONS

section

after collate index
before +collateg length
bit copy low
bool decat +1ltrim
+byte high +maxlength
character +high$ +rank
2. Arithmetic Built-in Functions.
abs decimal max
add: divide min
binary fixed mod
ceil float multiply
complex floor precision
conjg imag
3. Mathematical Built-in Funetions.
acos cos exp
asin cosd log
atan cosh logi10
atand erf log2
atanh erfe sin
4. Array Built-in Functions.
dim hbound prod
dot. lbound
5. Condition Built-in Funections.
cnchar onfield onkey
oncode. onfile onloc
13=1

T/79%

are an
not part

of

reverse

+rtrim

+search
string
substr
translate

real
round
sign
subtract
trunc

sind
sinh
sqrt
tan

tand
tanh

sum

onsource

intrinsic part
standard
convenience the built-in functions

PL/I but

verify

of the

are

AG94cC

6. Miscellaneous Built-in Functions.

addr +convert +nullo +stackbaseptr
+addrel +currentsize offset +stackframeptr
allocation date pageno +stacq
+baseno " empty pointer time
+baseptr +environmentptr +rel unspec
+clock lineno +Size valid
+codeptr null +stac +vclock

To facilitate the description of the built-in functions, each funection is
described in terms of one or more examples. Built-in functions are referenced
with a <function reference> as described in paragraph 6.8. If a function allows
a variable number of arguments, the examples show all possible forms of the
{function reference>. Unless the description of a specific function states
otherwise, all arguments can be <expression>s.

13.1 String Built-in Functions

When a description of a function indicates that its argument is to be converted
to a character-string, the conversion oeccurs as if the argument were an operand
of the "} |" infix operator. If the argument is to be converted to a bit-string,
the conversion occurs as if the argument were an operand of the "!"™ infix
operator. Refer to Sections 7 and 8.

Unless the description of a specific function states otherwise, the funection can
be invoked with scalar or aggregate arguments. When invoked with one or more
aggregate arguments, all arguments are promoted to the highest common aggregate
type as if they were operands of an infix operator. Refer to Sections 7 and 9.

13.1.1 After

Example:
after(s,C)

S and C are converted to S' and C°'. If both S and C are bit-strings, S' and C'
are bit-strings; otherwise, S' and C' are character-strings.

If S' is a bit-string, the result R 1is a bit-string; otherwise, R is a
character-string. .

If C' does not occur as a substring within S', or if S' is a null string, R is a
null string.

If C' is a null string, R is S'.

.

If C" is a substring within S', let i be the position within S' of the rightmost
character or bit of the leftmost substring C', and let n be the length of S°'.

If i=n, R is a null string.
If i<n, R is substr(s',i+1).

T7/78 13-2 : AG94B

13.1.2 Before

Example:
before(S,C)

S and C are converted to S' and C'. If both S and C are bit-strings, S' and C*
are bit-strings; otherwise, S' and C' are character-strings.

If 8* is a bit-string, the Eesult R is a bit-string; otherwise, R is a
character-string.

If S* or C' is a null string, R is a null string.
If C* is not a null string and does not occur as a substring within S', R is S°'.

If C* is a substring within S', "let i be the position within S' of the first
character or bit of the leftmost substring C'.

If i=1, R is a null string.
If i>1, R is substr(S',1,i-1).

3/87 13=2.7 AGY4E

This page intentionally left blank.

3/81 AGIUE

13.1.3 Bit

Example:
bit(S) or bit(S,L)

L is converted to L', where L' is a fixed-point, binary, real value of precision
(24,0). L' must be a nonnegative scalar value.

If L is given, S is converted to a bit-string of length L'.

If L is not given, S is converted to a bit-string S' as described in paragraph
13.1.

The result R is a bit-string whose length is the length of S' and whose value is
the value of S'. ’

13.1.4 Bool

Example:
bool(X,¥,W)
X, Y and W are converted to bit-string values X', Y' and W'. The length of W!
is 4 bits. The shorter of X' or Y' is extended on the right with zero bits
until it is the length of the longer string.
The result R is a bit-string.
If both X' and Y' are null strihhs; R is a null string.
If X' and Y' are not null strings, the length of R is the common length of X!

and Y'. The kth bit of R is given in the following table. M1, M2, M3 and M4
are the four bits of W',

X'k I'k Rk
0 0 M1
0 1 M2
1 0 M3
1 1 M4

13.1.4a Byte

Example:
byte(X)

byte is a nonstandard built-in function and its use makes programs dependent on
Multies PL/I.

X is converted to X', where X' is a fixed-point, binary, real, value of
precision (9,0). X' must be a nonnegative value.

The result R is a character-string of length 1.

The value of R is Substr(collate9(),Xt+1,1).

T/79 13=3 AGY4C

This page intentionally left blank.

T7/79 i AGg4C

13.1.5 Character

Example:
character(S) or character(3,L)

L is converted to L', where L' is a fixed-point, binary, real, value of
precision (24,0). L' must be a nonnegative scalar value.

If L is given, S is converted to a character-string, S', of length L'.

If L is not given, S is converted to 2 charaeter-string S' as described in
paragraph 13.1.

The result R is a character-string whose length is the length of S' and whose
value is the value of S'.

The character built-in function has two names: character and char.

T/T9 13=3.1 AG94cC

Example:
collate() or collate
The result is a character-string of length 128 that consists of the set of

characters in the Multics ASCII character set in ascending order. The Multics
ASCII character set is defined in the "Multics Programmers' Manual".

13.1.6a Collate9

Example:

collate9d() or collate9
The result is a character-string of length 512 that consists of- the set of
characters in the Multies Extended Character Set 1in ascending order. The

Multies Extended Character Set is defined in the MPM Reference Guide, Order
No. AG91.

13.1.7 Copy

Example:
copy(S,N)

N is converted to N', where N™-is a fixed-point, binary, real, value of
precision (28,0). N' must be a nonnegative scalar value. :

If S is a bit-string, it is conQerted to . a bit-string S'; otherwise, it is
converted to a character-string S°'. '

’ Thefrgsult R is 'a string of the same type as S'.

If N' = 0, R is a null string. If N' = 1, the value of R is S'. If N' > 1, the
value of R is the value of S' concatenated with itself N'-1 times. :

13.1.8 Decat

Example:
decat(s,C,X)
X is converted to a bit-string X' of length 3.

If both S and C are bit-strings, they are converted to bit-strings, S' and C*;
. otherwise, they are converted to chairacter-strings S' and C*.

MW . 13-4 ‘ AG9BA

The result R'is a string of the same type as S'., The value of R is given by the
following: : i

If C' is a null string, the value of R depends on X' as shown in the table
below:

X R

000 A null string
001 3!

010 A null string
o1 St

100 A null string
107 s .

110 A null string

" S!

If C' is not a null string, and C' is not a substring of S*', the value of R
depends on X' as shown in the table below:

X R
000 A null string
001 A null string
010 A null string
g1 A null string
100 st
107 S
110 S!

1 S

If C' is not a null string, and C' is a. substring of S', the value of R depends:
on X' as shown in the table below:

X' R

Goa: A null string

oo after(S',C')

010 cr

017 C'iiafter(s',C')

100 before(s',C')

101 before(sS',C')|}after(s',C')
110 before(s',C')}iC!'

111 - 8!

13.1.9 High

Example:
high(N)

N-is converted to N', where N' is a fixed-point, binary, real, value of
precision (24,0). N' must be a nonnegative scalar value.

The result R is a string of PAD characters of length N'. A PAD character is the

highest character in the Multics ASCII character set as defined in "The Multiecs
Programmers' Manual™.

"7 13-5 AG94A.

13.1.9a High9

Example:
high9 (N)

N is converted to N', where N' is a fixed-point, binary, real, value of
precision (24,0). N' must be a nonnegative scalar value.

The result R is a string of characters of length N', all of whose bits are

one=bits. This 1is the highest character in the Multics Extended Character Set
as described in the "Multics Programmers' Manual."

13.1.10 Index

Example:
index(s,C)

If both S and C are bit-strings they are converted to the bit-strings S' and C';
otherwise, they are converted to the character strings S' and C'.

The result R is a fixed-point, binary, real, value of precision (24,0).
If either 3' or C' is a null string or if C' is not contained as a substring

within S', R 1is zero; otherwise, R 1is the position within S' of the first
character or bit of the leftmost substring C'.

13.1.11 Length e

Example:
length(S)

If S is a bit-string, it is converted to a bit-string S'; otherwise, it is
converted to a character-string S°'.

The result R is a fixed-point, binary, real, value of precision (24,0).

The value of R is the length of S'.

13.1.12 Low

Example:
low(N)

N is converted to N', where N' 1is a fixed-point, binary, real, value of
precision: (24,0). N' must be a nonnegative scalar value.

The result R is a string of NUL characters of length N*. A NUL character is the

lowest character in the Multics ASCII character set as defined in the "Multies
Programmers'’ Manual.™

/7T 13-6: AGIUA.

13.1.12a Ltrim

Example:
ltrim(S,C) or 1ltrim(s)

ltrim is a nonstandard built-in function and its use makes programs dependent on
Multies PL/I.

S and C are converted to the character=strings S' and C'. If C is omitted, the
value of C' is a single blank character. The result R is a character-string.

To determine the value of R, let n be the length of S'.

If n is zero then R is the null character-string. Otherwise, for k=1,2,...,n,
the kth character of S', S'k, is tested to see if it cccurs in C'. Let m be the
first value of k for which the test fails; or if the test succeeds for all
values of k, m=n+1.

The length of the result R is lzn-m+1. For k=1,2,...,1, RR=S'k+m-1.

13.1.12b Maxlength

Example:
maxlength(s)

maxlength is a nonstandard built-in function and its use makes programs. dependent
on Multies PL/I.

If S is a bit-string, it is converted to a bit-string S'; otherwise, it is
converted: to a character-string S'.

The: result R is a fixed-point binary, real value of precision (24,0).
‘The value of R is the maximum length of S'.
NOTE: The maxlength built-in function differs from the length built-in

function oniy. when ‘S is a varying bit-string or a varying

character-string. In all other cases both built-in functions return

tha sams resuls

i T CoUL Ve

13.1.12¢' Rank

Example:
rank(X)

rank is a nonstandard built-in function and its use makes programs dependent on
Multics PL/I.

X must be a character-string of length 1.
The result R is a fixed-point, binary, real, value of precision (9,0).
The value of R is. index(collate9(),X)-1.

T/79 - 13=6.1 AG94C

13.1.13 Reverse

Example:
reverse(Ss)

If S is a bit-string, it is converted to a bit-string S'; otherwise, it is
converted to a character-string S'.

The result R is a string whose type and length are the type and length of S'.

The kth bit or character in R is the (n-k+1)th bit or character in S', where n
is the length of S', and k=1,2,...,n.

13.1.132 Rtrim

Example:
rtrim(s,C) or rtrim(s)

The rtrim function is a nonstandard built-in function and its use makes programs
dependent on Multics PL/I.

S and C are converted to the character-strings S' and C'. If C is omitted, the
value of C' is a single blank character. The result R is a character-string.

To determine the value of R, let n be the length of S'. For kK=n,n-1,...,1, the
kth character of S', S'k, is tested to see if it occurs in C'. Let m be the
first value of k for which the test fails; or if the test succeeds for all
values of k, m=0,

The length of the result R is l=m. For k=1,2,...,m, Rk=S'k.

. 13.1.14 Search

Example:
search(s,C)

" The search function is a nonstandard built-in function; its use makes programs
‘dependent on Multies PL/I.

S and C are converted to the character-strings S' and C'.

The result R is a fixed-point, binary, real, value of precision (24,0).

If S* is a null string, R is zero; otherwise to determine the value of R, let n
be the length of S'. For k=1,2,...,n, the kth character of 3' is tested to see

if it occurs in C'. R is the first value of k for which the test succeeds; or
if no character of S' ocecurs in C', R is zero.

/81 13-6.2 AG94E

13.1.15 String

Example:

string(s)
S must be an arithmetic or string scalar value, or it must be an aggregate of
stringédata suitable for use in string overlay defining as described in paragraph
4.3.3.6.

If S is a scalar, other than a bit-string, it is converted to a character-string
S'; otherwise, let S' be S.

The result R is a string whose type and value are the type and value of S'. If

S' is an aggregate, the type of R is the type of the components of S', and the
value ¢f R is the concatenation of ali secalar components of S°,.

13.1.16 Substr

Example:
substr(S,I,J) or substr(sS,I)

I and J'are converted to I' and J', where I' and J' are fixed-point, binary,
real, values of precision(24,0).

If S is a bit-string, it is converted to. a bit-string S'; otherwise, it is
converted to a character-string S'.

The result R is a string of the same type as S°'.

To determine the value of R, let i=I°' and, if J is given, let j=J'; otherwise,
let j=n-i+1, where n is the length of S'.

If (0<i=-1<j+i=-1<n) is not satisfied, the stringrange condition occurs. Unless
.detection of the condition has been enabled the program is. in error- and the
results of continued execution are undefined.

If the: inequalities are satisfied, R is a string of length j. The kth character
or bit of R is.the (i+k-1)th character or bit of 3'.

13.1.17 Iranslate

Example:

translate(S,T) or translate(S,T,X)
S, T and X are converted to. the character-strings S*, T' and X'. If X is
omitted, X' is the value of collate9(). If T' is shorter than X', it is padded
on the right with blanks until, it is the length of X'.
The: result R is a character-string of the length of S'.
Let n be the length of S', For k=1,2,...,n, determine Rk by the following:

Let i be given by index(X’,S'k). If i=0, Rk=S'k; otherwise, Rk is the ith
character of T*,

117 13-7 AGoAA:

13.1.18 Verify

Example:
verify(s,C)
S and C are converted to the character-strings S' and C'.
The result R is a fixed-point, binary, real, value of precision (24,0).

If S' is a null string, R is zero; otherwise to determine the value of R, let n
be the length of S'. For k=1,2,...,n, the kth character of S' is tested to see
if it oceurs in C'. R is the first value of k for which the test fails; or if
every character of S' occurs in C', R is zero.

13.2 Arithmetic Built-in Functions

When the description of a specific function requires that its arguments be converted
to the "common" type, base and mode, they are converted as if they were operands
of the infix operator "+m,

When the deseription of a specific function requires that a single argument be
converted to arithmetic type, the argument is converted as if it were an operand
of the prefix operator "+", Refer to Sections 7 and 8 for a discussion of
conversion,

Unless the description of a specific function states otherwise, the function can
be invoked with scalar or aggregate arguments. When invoked with one or more
aggregate arguments, all arguments are promoted to the highest common aggregate
type as if they were operands of an infix operator. Refer to Sections 7 and 9.
Each function is described as operating on scalar values and yielding a secalar
result. When given aggregate arguments, the function is applied to corresponding
scalar components of the promoted aggregate arguments and produces the corresponding
. scalar component of the aggregate result. The order of evaluation of the scalar
components is not defined. The result is an aggregate of the same aggregate
type as the promoted aggregate arguments.

S

13.2.1 Abs

X must be an arithmetic or string value.

X is converted to X'. The type, base, mode and precision of X' are given in
paragraph 13.2.

The result R has the type and base of X'.
The mode of R is real.

If the type of X' is fixed-point and the mode of X' is complex, the precision of
R is:

(min({N,p+1),q)

where N is 71 if the base of X' is binary and 59 if the base of X' is decimal,
and (p,q) is the precision of X'.

3/81 13-8 AG94E

Otherwise, the precision of R is the precision of X'.

If X' is complex, the value of R is the positive square root of x*¥2+y##2 yhere
x and y are the real and imaginary parts of X'.

If X' is real, the value of R is X' if X'>0; otherwise, it is =X'.

13.2.2 Add

Example:
add(X,Y,P) or add(X,Y,P,Q)

X and Y must be arithmetic or string values, and P and Q must be <decimal
integer>s. Q may be signed.

No conversion or promotion is performed for P or Q. X and Y are converted to X!
and Y¥', where the type, base and mode of X' and Y' are the common type, base and
mode as defined in paragraph 13.2.

If the common tyﬁe.is fixed-point and Q is not given, Q is assumed to be 3zero.
If the common type is floating-point, Q must not be given. Q must be in the
range -128<Q<127.

If the common base is decimal, let N be 59. If the common base is binary and
the common type is fixed-point, let N be 71, If the common base is binary and
the common type is floating-point, let N be 63. P must be less than or equal to
N.

The result R has the common type, base and mode.

If R is floating-point, itSipreQESion is (P); otherwise, it is (P,Q).

The value of R is L'+Y'..

13.2.3 Bigary

Example:
binary(X) or binary(X,P) or binary(X,P,Q)

X must be an arithmetic or string value, and P and Q must be <decimal integer>s.
Q may be signed.

No conversion or promotion is performed for P or Q. If P or P and Q are given,
they are the precision of the result. If the result is floating-point, P cannot
exceed 63; otherwise, P cannot exceed 71. If the result is floating-point, Q
cannot be given. If P, but not Q, is given and the result type is fixed=-point,
Q is assumed to be zero. If given, Q must be in the range -128<Q<127.

The result is formed by converting X tc a binary arithmetic value according to
the conversion rules given in paragraph 8.2. If P or P and Q are given they are
the target precision; otherwise, the target precision is determined by the
conversion rules of paragraph 8.2.10.

The: binary built-in function has two names: binary and bin.

13-9 AGYL4

13.2.4 Ceil

Example:
ceil(X)
X must be an arithmetic or string value.

X 1is converted to X'. The type, base, mode and precision of X' are given in
paragraph 13.2. The mode of X' must be real.

The result R has the type, base and mode of X'.
-If the type of R is fixed-point, the precision of R is:
(min(N,max(p-q+1,1)),0)

where N is 71 if X' is binary and N is 59 if X' is decimal, and (p,q) 1is the
precision of X'.

If the type of R is floating-point, the precision of R is the precision of X'.

The value of R is the smallest integer > X'.

13.2.5 Complex

Example:

complex(X,¥)

.

X and Y must be arithmetic or string values.
X and Y are converted to X' and Y', where the type, base and mode of X' and Y'

are the common type, base and mode as defined in paragraph 13.2. The common
mode must be real. . ’

The result R is a complex value whose type and base are the common type and
base. .

If the type of R is fixed-point, the precision of R is:
{(min(N,max(px-ax,py-qy)+max{qx,qy)),max(qx,qy))

where N is 59 if the base of R is decimal and N is 71 if the base of R is
binary. (px,qx) is the precision of X' and (py,qy) is the precision of Y'.

If the type of R is floating-point, the precision of R is:
min(N,max(px,py))

where px is the precision of X' and py is the precision of Y'. If the base of R
is binary, N is 63; otherwise N is 59.

The result R is a complex value whose real part is X' and whose imaginary part
is Y°. -

The complex built-in function has. two names: complex and cplx.

13=10 AG94

13.2.6 Copig

Example:
conjg(X)
X must be an arithmetic or string value.

X 1is converted to X'. The type, base, mode and precision of X' are given in
paragraph 13.2. The mode of X' must be complex.

The result R has the type, base, mode and precision of X'.

The value of R isvthe conjugate of X'. The conjugate of a complex number is the
complex number with the sign of its imaginary part reversed.

13.2.7 Decimal

Example:
decimal(X) or decimal(X,P) or decimal(X,P,Q)

X must be an arithmetic or string value, and P and Q must be <{decimal integer>s.
Q may be signed. ’

No conversion or promotion is performed for P or Q. If P or P and Q are given,
they are the precision of the result. P cannot exceed 59. If the result is
floating-point, Q cannot be given. If P, but not Q, is given and the result
type is fixed-point, Q is assumed to be zero. If given, Q must be in the range
-128<Q£ 127 ..

.

..... | N --_---_A. Py 4 - P - e d S

The resulb is formed by converting X to a decimal arithmetic value according Lo
the conversion rules given in paragraph 8.2. If P or P and Q are given, they

are the target precision; otherwise, the target preclsion is: determined by the
conversion rules of paragraph §.2.

The decimal built-in function has two names: decimal and dec.

13:2.8 Divide

'Example:
divide(X,Y,P) or divide(X,Y,P,Q)

X and Y must be arithmetic' or string values, and P and Q must be <decimal
integer>s. Q may be signed.

No conversion or promotion is performed for P or Q. X and Y are converted to X!
and ', where the type, base and mode of X' and Y¥' are the common type, base and
mode as defined in paragraph 13.2.

If the common type is fixed-point and Q is not given, Q is assumed -to be =zero.
If the common type is floating-point, Q must not be given. Q must be in the
range -128<Q£127.

If the common base is decimal, let N be 59. If the common baser is binary and
thee common type is fixed-point, let N: be 71. If the common base is binary and

the common type: is floating-point, let. N. be 63. P must be less than or equal to
N.

?h?fresult'R has the: common type, base- and mode. The precision of R is: (P,Q) or
P).

13=11 AGY94

If ¥' = 0, the zerodivide condition occurs. Unless detection of the condition
has been enabled, the program is in error and the results of continued execution
are undefined.

R is the value of X'/Y'.

13.2.9 FEixed

Example:
fixed(X) or fixed(X,P) or fixed(X,P,Q)

X must be an arithmetic or string value, and P and Q must be <decimal integer>s.
Q may be signed.)

No conversion or promotion is performed for P or Q. If P or P and Q are given,
they are the precision of the result. If the result is decimal, P cannot exceed
59 and if the result is binary, P cannot exceed 71. If P is given and Q is not,
the precision of the result is (P,0). Q must be in the range -128<Q<127.

The result is formed by converting X to a fixed-point arithmetic value according
to the conversion rules given in paragraph 8.2. If P or P and Q are given, they

are the target precision; otherwise, the target precision is determined by the
conversion rules of paragraph §.2.

13.2.10 Float

Example: .
float(X) or float(X,P)
X must be an arithmetic or string value and P must be a <decimal integer>.

NO conversion or promotion is performed for P. If the base of the reéult is
binary, P must not exceed 63; otherwise, P must not exceed 59.

The result is formed by converting X to a floatiﬁg-point arithmétic value
according to the conversion rules given in paragraph 8.2. If P is given, it is

the target precision; otherwise, the target precision is determined by the rules
of paragraph 8.2.

13.2.11 Floor

Example:
floor(X)
. X must be an arithmetic or string value.

X is converted-to X'. The- type, base, mode and precision of X' are given in
paragraph 13.2. The mode of X' must be real.

The result R has the type, base and mode of X'.
If the type of R is fixed-point, the precision of R is:
(min(N,max(p-q+1,1)),0)

where N is 71 if X' is binary and N is 59 if X' is décimal, and (p,d) is the
precision of X',

13=12 AG94

If the type of R is floating-point, the precision of R is the precision of X'.

The value of R is the largest integer that is L X,

13.2.12 Imag
Example:
imag(X)

X must be an arithmetic or string value.

X 1is converted to X'. The type, base, mode and precision of X' are given in
paragraph 13.2. The mode of X' must be complex.

The result R has the type, base and precision of X' but its mode is real.

The value of R is the imaginary part of X'.

13.2.13 Max

Example:
max(X1,X2,...,Xn)
Each Xj must be an arithmetic or string value and n must be greater than 1.

Each Xj is converted to X'j, wﬁébe‘X'j has the common type, base and mode of the
given arguments. The common mode must be real.

The result R has the common type, base and mode.
If the common type is fixed-point, the precision of R is:

(min(N,max(pl=ql,...,pn=-qn)+
max(ql,...,qn)), max(gl,...,qn))

where N is 71 if the common base is binary and N is 59 if the common base is
decimal. (pj,qj) is the: precision of X'j.

If the common type is floating-point, the precision of R is:
max{pt,...,pn)
wherevpj is the precision of X'j.

The value of R is the maximum value of X1, X'2, ..., 'n.

13.2.1% Min

Example:

min(X1,X2,...,Xn)
Each X} must be an arithmetic or string value and n must be: greater than 1.
Eachr Xj is converted to X"j, where X'j has the. common type, base and mode of the
given arguments. The common mode must be real.

13-13 AG94

The result R has the common type, base and mode.
If the common type is fixed-point, the precision of R is:

(min(N,max(p1-q1,...,pn-qn)+
max(ql,...,qn)), max(ql,...,qn))

where N is 71 if the common base is binary and N is 59 if the common base is
decimal. (pJj,qj) is the precision of X'j.

If the common type is floating-point, the precision of R is:
max{(p1,...,pn)
where pj is the precision of X'j.

The value of R is the minimum value of X'1, X'2, ..., X'n.

13.2.15 Mod

Example:
mod (X,Y)
X and Y must be arithmetic or string values.
X and Y are converted to X' and Y', where the type, base and mode of X' and b
are the common type, base and mode as described in paragraph 13.2. The common
mode must be real.
The result R has the common type, base and mode.
If the common type is fixed-point, the precision of R is:
(min(N,py-qy+max(qx,qy)),max(qx,qy))

.Wwhere N is 71 if ths common base 13 binary and N is 59 if the common base is
decimal. (px,qx) is the precision of X' and (py,qy) is the precision of Y'.

If the common type is floating-point, the precision of R is:
max(px,py)
where px is the precision of X' and py is the precision of Y'.

If ¥Y' = 0, R is X'; otherwise, R is X'-I'"#floor(X'/1*).

13.2.16 Multiply

Example:
multiply(X,Y,P) or multiply(X,Y,P,Q)

X and Y must be arithmetic or string values, and P and Q must be {decimal
integer>s. Q may be signed.

No conversion or promotion is performed for P or Q. X and Y are converted to X'
and' ', where the type, base and mode of X' and Y' are the common type, base and
mode: as defined in paragraph 13.2.

1f the common type is fixed-point and Q is not given, Q is assumed to be zero.

If the common type is fleating=point, Q must not be given. Q must be in the
range -128<Q<127.

13=14 AG9Y

If the the common base is decimal, let N be 59. If the the common base is
binary and the common type is fixed-point, let N be 71. If the common base is
binary and the common type is floating-point, let N be 63. P must be less than
or equal to N.

The result R has the common type, base and mode. The precision of R is (P,Q) or
(P). .

The value of R is X'#y!',

13.2.17 Precision

Example:
precision(X,P) or preeision(X,P,Q)

X must be an arithmetic or string value, and P and Q must be <decimal integer>s.
Q may be signed.

No conversion or promotion is performed for P or Q.

X is converted to X', where the type, base, mode and precision of X! are
determined as follows:

If X is arithmetic the type, base and mode of X* are the type, base and mode of
X.

If X is a character-string, the type of X' is fixed-point, the base is decimal
and the mode is real.

Ir X is a bit-string, the type of X' is fixed-point, the base is binary and the
mode' is real.. ~.

The: precision: of X! is- (P,Q) if X' is fixed point; and is P if X' is floating
point. ,

If the type of X' is fixed-point and Q is not given, Q is assumed to be zero. Q
must be in the range -128<Q<127. 1If the type of X' is floating-point, Q cannot
be given.

If the base of X' is decimal, P cannot greater than 59. If the base of X' is

binary and the type is. fixed-point, P cannot be greater than 71; while if the
type of X' is floating-point, P cannot. be greater than 63.

The result R has the type, base, mode and precision of X'.

The value of R is the value of X'.

The. precision built-in function has two names: precision and prec.

13.2.18 BReal

Exam;le:
real(X)
X must be an arithmetic or string value.

X is converted to X', where the type, base, mode and. precision of X' are given
in paragraph 13.2. The mode of X' must be complex.

13-15 'AG94

The result R has the type, base and precision of X' but its mode is real.

The value of R is the real part of X'.

13.2.19 Round

Example:
round (X,K)

X must be an arithmetic or string value, and K must be an optionally signed
<decimal integer>. .

No conversion or promotion is performed for K. X is converted to X', where the
type, base, mode and precision of X' are given in paragraph 13.2.

The result R has the type, base and mode of X'.
If X' is fixed-point, the precision of R is:
(max(1,min(p=-q+1+K,N)),K)

where N is 71 if the base of X' is binary and N is 59 if the base of X' 1is
decimal, and (p,q) is the precision of X'.

If X' is floating-point, K must be. greater than zero, and the precision of R is:
(min(K,N))

where N is 59 if X' is decimal and N is 63 if X' is binary.

~—

The value of R is:
sign(X')*floor(abs(X')#(b*¥n)+0.5)/(bi#n)

where b 1is 2 if the base of X' is binary, and b is 10 if the base of X' is

decimal. If the type of X% is fixed=-point, n=K; otherwise, n=K-e, where e is

the exponent of X'.

If the mode of X' is complex, R is the value of X' with its real and imaginary

parts rounded as described above for real numbers.

13.2.20 Sigp

Example:
sign(X)
X must be an arithmetic or string value.

X is converted to X', where the t&pe, base, mode and precision of X' are given
in paragraph 13.2. The mode of X' must be real.

The result R is a fixed-point, binary, real value of precision (17,0).
If X' < 0, the value of R is =1.

If X'. = 0, the value of R is 0.

If X' > 0, the value of R is +1.

13-16 ' AG94

13.2.21 Subtract

Example:
subtract(X,Y,P) or subtract(X,Y,P,Q)

X and Y must be arithmetic or string values, and P and Q must- be
<decimal integer>s. Q may be signed.

No conversion or promotion is performed for P or Q. X and Y are converted to X'
and Y', where the type, base, and mode of X' and Y' are the common type, base
and mode as defined in paragraph 13.2.

iIf the common type is fixed-point and Q is not given, Q is assumed to be zero.
If the common type is floating-point then Q must not be given. Q must be in the
range -128<Q<127.

If the common base is decimal, let N be 59. If the common base is binary and
the common type is fixed-point, let N be 71. If the common base is binary and
the common type is floating-point, let N be 63. P must be less than or equal to
N.

The result R has the common type, base and mode. The precision of R is (P,Q) or
(P)‘

The value of R is X'-Y'.

13.2.22 Trunc

Example:
trunc(X) : T~
X must be- an arithmetic or string value.

X is converted to X', where the type, base, mode and precision of X' are given
in paragraph 13.2. The mode of X' must be real.

The type, base and mode of the result R are the type, base and mode of X'.
If the type of X' is fixed-point, the precision of R is:
(min(N,max(p=q+1,1)),0)

where N is 71 if X' is binary and N is 59 if X' is decimal, and (p,q) is the
precision of X'. :

If the type of X' is floating-point, the precision of R is the precision of X'.
If X' < 0, the value of R is ceil(X').
If X' > 0, the value of R is floor(X').

13.3 The Mathematical Built-inm Functions

M‘
All arguments to mathematical built-in functions must be arithmetic or string
values. They are converted to. floating-point values as described: below:

Let X be the argument and let X' be the: converted argument.

13=1T AGY94-

If X is a bit-string, X' is a real binary floating-point value of precision 63.
If X 1is a character-string, X' is a real decimal floating-point value of
precision 59,

If X is floating-point, X' has the base, mode and precision of X.
If X is fixed-point, X' has the base and mode of X, but its precision is:
min(N,p)

:herevp is the precision of X, and N is 59 if X' is decimal or N is 63 if X' is
inary.

;he result R is a floating-point value that has the base, mode and precision of
L

If the built-in function has two arguments, X and Y, convert them as above to X'
and Y'. In addition, if one of the converted arguments is decimal and the other
binary, convert the decimal argument to binary. Let p be the precision of X'
and r be the precision of Y*'; then the result R has the common base and mode of
X' and Y' and the precision max(p,r).

The mathematical built-in functions of Multics PL/I are designed to produce
accurate results for binary arguments. If the converted argument X' is decimal,
it 1is converted to binary and its precision is set to 63 binary digits. The
function is evaluated and the result is converted back to decimal. If the
precision of X' was greater than 21, the accuracy of the result will be
approximately 20 decimal digits.

Unless the description of a specific function states otherwise, the function can
be invoked with scalar or aggregate arguments. When invoked with one or more
aggregate arguments, all arguments are promoted to the highest common aggregate
type as if they were operands of an infix operator. Refer to Sections 7 and 9.
Each function is described as operating on scalar values and yielding a scalar
result. When given aggregate arguments, the function is applied to
corresponding scalar components of the promoted aggregate arguments and produces
the corresponding scalar component of the aggregate result. The order of
evaluation of the scalar components is not defined. The result iz an aggregate
of the same aggregate type as the promoted aggregate argument.

The table below lists all of the mathematical built-in functions and gives the
error conditions and value returned by each function. If one or more of the
listed error conditions occurs during the evaluation of one of the functions,
the error condition is signalled. Note that other computational conditions may
also be signalled as described in Section 10.

When reading the table, let a complex argument X be defined as Y1+i*Y2.

LRVANS 13-18 AG94A

TABLE OF HATHEHATICAL_BUILT-IN FUNCTIONS

Function Argument Value Error
Reference Mode Returned Conditions
acos(x) real arccos in radians x>1
0<acos(x)<pi x<=1
asin(x) real arcsin in radians x>1
-(pi/2)<asin(x)<(pi/2) %<=1
atan(x) real arctan(x) in radians
-(pi/2)<atan(x)<(pi/2)
complex -i®atanh{i%x) x=+1i
atan(y,x) both real for x>0 arctan(y/x) x=y=0
for y>0 & x=0 pi/2
for y>0 & x<0 pi+arctan(y/x)
for y<0 & x=0 -pi/2
for y<0 & x<0 -pi+arctan(y/x)
atand(x) real arctan(x) in degrees -
-90<atand(x)<90
atand(y,x) both real (180/pi)*atan(y,x) x=y=0
atanh(x) real arctanh(x) 1Xi21
complex (log((1+x)/(1=x)))/2 x=+1
cos(x) real cosine(x) -
x in radians
- complex cosine(y1)*cosineh(y2) -
-i*sine(y1)*sineh(y2)
cosd(x) real cosine(x) -
X in degrees
cosh(x) real cosineh(x) -
complex: cosineh(y1)*cosine(y2) -
+i*sinenh(y1)%*sine(y2)
erf(x) real ox 2 -
Tz"" J a"t dt:
erfe(x) real 1 - erf(x) -
exp(x) real efdy -
complex. e#¥#y -
log(x) real In(x) x<0
complex In(x) = w x=0
where w = u+sity
and -pidv<pi
log10(x) real log base: 10 of x x<0
log2(x) real log base 2 of x x<0
sin(x) real sine(x) -
X in radians:
complex siae(y1)®cosineh(y2) -
+i%*cosine(y1)®sineh(y2)
sind(x) real. sine(x) -
X in degrees
1177 13=18.1

AG94A

This page intentionally left blank.

nsr AGoL

sinh(x) real sineh(x) -
complex sineh(y1)%*cosine(y2) -
+i%cosineh(y1)*sine(y2)
.sqrt(x) real Jx x<0
complex X = w -
where w = u+ity
and either u>0, or
u=0 and v>Q
tan(x) real tangent(x) -
X in radians:
complex tangent(x) -
tand(x) real tangent(x) -
X in degrees
tanh(x) real hyperbolic -
tangent of x
complex hyperbolic -
tangent of x
1T 13=19-

AG94A

13.4 The Array Built-in Functions

13.4.1 Dimension

Example:
dimension(X,N)
X must be an array value and N must be a scalar arithmetic or string value.

N is converted to N', where N' is a fixed-point, binary, real, value of
precision (17,0). :

The program is in error if X has less than N' dimensions, or if N' is less than
one.

The result R is a fixed-point, binary, real, value of precision (24,0) whose
value is the number of elements in the N'th dimension of X.

The dimension built-in function has two names: dimension and dim.

T3.4.2 Dot

Example:
dot(X,Y,P) or dot(X,¥,P,Q)

X and Y must be one dimensional arrays of arithmetic or string values, and P and
Q must be <decimal integer>s. Q may be signed.

X and Y are converted to X' and Y', where X' and Y' are the common type, base
and mode as defined in paragraph 13.2. The precision of X' and Y' is (P) or
(P,Q).

the common type is fixed-point.and § is not given, @ is assumed to Dbe zero.
must be in the range -128<Q<127. If the common base is decimal, let N be 59.
f the common base is binary and the common type is fixed-point, let N be 71.
f the common base is binary and the common type is floating-point, let N be 63.

P must be less than or equal to N.

ey

HHO

The result R is a scalar arithmetic value whose type, base, mode and precision
are the type, base, mode and precision of X'.

The value of R is:
n
2 X'[1]1%Y'[r-m+i]
i=m:

where [m:n] are the bounds of X' and (r:s] are the bounds of Y'. The program is
in error if n-m+l £ s-r+il.

13.4.3 Hbound:

Example:
hbound (X ,N)

X must be an array value-and N must be a scalar arithmetic or string value.

13-20 AGYE:

N is converted to N', where N' is a fixed-point, binary, real, value of
precision (24,0).

The program is in error if X has less than N' dimensions, or if N' is less than
one.

The result R is a fixed-point, binary, real, value of precision (24,0) whose
value is the upper bound of the N'th dimension of X.

13.4.4 Lbound

Example:
lbound(X,N)
X must be an array value and N must be a scalar arithmetic or string value.

N is converted to N', where N' is a fixed-point, binary, real, value of
precision (24,0).

The program is in error if X has less than N' dimensions, or if N' is less than
one.

The result R is a fixed-point, binary, real, value of precision (2%,0) . whose
value is the lower bound of the N'th dimension of X.

13.4.5 Pprod

Example:

prod(X)
X must be an array of arithmetic or string values.
X 1is converted to X' as if it was an operand of the prefix operator "+". If X'
is a fixed-point value with precision (p,0) it is converted to a fixed-point
value, Y, of the same base and mode, but with precision (N,0), where N is 71 if
the base is binary and N is 59 if the base is decimal.

If X' is not a fixed-point value- of precision (p,0) it is converted to a
floatin§-point value Y, that has the base and mode of X'. The precision of Y is
min(N,p), where N is Sé if X' is decimal or N is 63 if X' if binary.

The result R is an arithmetic scalar whose type, base, mode, and precision are
those of Y.

The value of R is:
(1) &= x(2) & ,,, ¥ X(n)!*

13.4.6 Sum

Example:
sum(X)
X must be an array of arithmetic or string values.

X is converted to X' as: if it was an operand of the: prefix operator "+".

13-27 AG94

The result R is an arithmetic scalar value whose type, base and mode are the
type, base and mode of X'.

If X' is fixed-point of preecision (p,q), the precision of R is (N,q), where N is
71 if the base of R is binary and N is 59 if the base of R is decimal.

If X' is floating-point, the precision of R is the precision of X'.

The value of R is:

(1D + X(2)' + ... + X(n)

13.5 Condition Built-in Funmctions

The condition built-in functions access values that are set by the signalling of
certain conditioms. They are best understood if they are considered external
controlled variables that are allocated and assigned values by the signalling of
a condition.

When one of the conditions that sets the value of a condition built-in function
is signalled, the old value of the function is stacked or pushed down until
control returns to the point where the signal was made. Control is considered
to have returned if the <on unit> entered by the signal returns to the block
activation making the signal, or to any of its dynamic predecessors.

The effect of this mechanism: is to properly stack the values of these built-in
functions. For example, if the conversion condition occurs in an <on unit>
entered by a signal of the conversion condition, the values of "onchar" and
"onsource™ are stacked and the condition is signalled again. On return from the
second activation of the <on unit>, the old values of "onchar®™ and "onsource"
are restored and the execution of the first activation af the <on unit> is
resumed.

Since the initial value of each of these functions is a null-string, except for
"onchar™ which is a blank, and "oncode" which is zero, these are the values
returned by the functions when they are invoked by a block activation that is

not an <on unit> or a dynamic descendent of an <on unit> whose signal set the
value. '

13.5.1 Qnghar

Example:
onchar() or onchar

The value returned by this function is a single character set by the occurrence
of the conversion condition as described in paragraph 10.4.2, or is a blank.

13.5.2 QOpgode

Example:
oncode() or oncode

The value returned by this function is a fixed-point, binary, real number of
precision (17,0). The value indicates the, reason why the condition was
signalled. Because the run-time subroutines that support the execution of PL/I
programs are subject to modification and improvemsnt, the list of error code
values is subject to change and is not published in this document. If a program

13-22 | AGY4

is expected to run on other implementations of PL/I or on future versions of
Multies PL/I, the program logic must not depend on the value returned by this
built-in function.

13.5.3 Onfield

Example:
onfield() or onfield

The value returned by this function is a character-string set by the occurrence
of the name condition as described in paragraph 10.4.5, or is a null string.

13.5.4 0Onfile

Example:
onfile() or onfile
The value returned by this function is the filename for which the conversion,

name, endfile, transmit, record, key, endpage, or undefinedfile condition was
signalled, as described in Section 106, or is a null string.

13.5.5 Unkey

Example:
onkey() or onkey
The value returned by this function is the character-string key of the record

for which thesendfile, transmit, record or key condition was signalled, as
described in Section 10, or is a null string.

13.5.6 Onloc

Example:

onloc()} or onloc
The wvalue returned by this function is a character-string that identifies the
entry point used to enter the most recent <procedure> bloek activation that is a

dynamic predecessor of the most recent <on unit> activation. If no <on unit>
activation exists, the function returns a null string.

13.5.7 Onsource

Example:
onsource() or onsource
The value returned by this function is the value set by the occurrence of the

conversion condition as desecribed in paragraph 10.4.2, or is a null string.

13-23 AG9Y

13.6 Miscellaneous Built-in Functions

13.6.1 Addr

Example:
addr(X)

X must be a <reference> to a variable whose storage 1is connected, as described
in paragraph 4.3.1.3. .

If X 1is a <{simple reference> that identifies an unallocated, level-one,
controlled variable, the result is a null pointer; otherwise, the result is a

scalar pointer that identifies the generation of storage referenced by X. 1In
- the latter case, the evaluation of X must yield a generation of storage.

13.6.2 Addrel

Example:
addrel(X,I)

Addrel is a nonstandard built-in function and its use makes programs dependent
on the data representation of Multies PL/I.

X must be a scalar pointer value and I is converted to I°'. If I 1is a
bit-string, I' is a scalar bit-string of length 18; otherwise I' is a scalar
fixed-point, binary, real value of precision (18,0).

The result R is a scalar pointer value whose ring number and segment number are

the ring and segment numbers of X and whose word offset is given by the sum of
the word offset of X and the value of I. The bit offset of R is zero.

13.6.3 Allocation

Example:
allocation(X)
X must be a <reference> to a level-one controlled variable.
The result R is a scalar, binary, fixed-point, real number of precision (17,0).

The value of R 1is the number of generations of X currently allocated. If no’
generations are allocated, the value of R is zero.

The allocation built-in function has two names: allocation and alloen.

13.6.4 Baseno

Example:
baseno(X)
Baseno is a nonstandard built-in function and its use makes programs dependent

on the representation of pointer values in Multies FL/I.

T7/79 13=-24 AG94C

X must be a scalar pointer value.

The result R is a bit-string of length 18 whose value 1is the bit-string
representation of the segment number part of X.

13.6.5 Baseptr

Example:
baseptr(I)

Baseptr is a nonstandard built-in function and its use makes programs dependent
on the representation of pointer values in Multies PL/I.

I is converted to I'. If I is a bit-string, I' is a scalar bit-string of length
18; otherwise I' is 3 scalar, fixed-point, binary, real value of precision
(18,0).

The result R is a scalar pointer value whose ring number is the current ring,
whose segment number is I, and whose offsets are zero.

13.6.5a Clock

Example:
clock or eclock()

Clock is a nonstandard built-in function and its use makes programs dependent on
Multiecs PIL/T

........ i e

The fesult R is a fixed-point, binary, real value of precision (71,0).

The'value of R is the number of microseconds since 0000 hours January 1, 1901,
Greenwich mean time.

13.6.5b Codeptr

Example:
codeptr(X)

Codeptr is a nonstandard built-in function and its use makes programs dependent
on Multies PL/I.

X must be an entry, label, or format value. The result R is a pointer value.
If X is an entry value, then R is a pointer to the entry point identified by X.
If X is a label value, then R is a pointer to the <statement)> identified by X.
If X is a format value, then R is a pointer to the <format statement> identified
by X.

T/79 ‘ 13=25 AG94C

13.6.6 Convert

Example:
convert(X,Y)
Convert is a nonstandard built-in function.
X must be a <reference> to a scalar variable and Y must be a scalar value.
Y is converted to Y', where the data type of Y' is the data type of X, and the
value of Y' is the value of Y converted according to the rules for conversion

given in Section 8.

The result R has the data type and value of Y'.

13.6.6a Currentsize

Example:
currentsize(X)

Currentsize is a nonstandard built-in function and its use makes programs
dependent on the internal representation of data in Multies PL/I. :

X must be an unsubscripted <reference> to a level-one variable.

The result is a fixed-point, binary, real number of precision (19,0) whose value
is the number of 36-bit words occupied by the generation of storage obtained by
evaluating the reference X. Note that when X is a reference to a based variable
with <refer option>s, this function returns a value that depends on the

{reference> contained 1in the <refer option>, not on the <expression> in the
<extent expression>.

13.6.7 Date

Example:

date() or date
The result R is a character-string‘of length 6.
The value of R is:

YYMMDD

where YY is the year, MM is the month, and DD is the day.

13.6.8 Empty

Example:
empty() or empty

The result R is an empty area value,

7/78 13-26 AG94B

i

13.6.8a Environmentptr

Example:
environmentptr(X)

Environmentptr is a nonstandard built-in function and its use makes programs
dependent on Multies PL/I.

L must be an entry, labei, or format value. The result R is the activation
record pointer of X.

13.6.9 Lineno

Example:
lineno(X)
X must be a scalar file value.

If X does not identify an open file-state block with the <{print attribute>, the
program is in error.

The result R is a scalar, fixed-point, binary, real number of precision (35,0),

The value of R is the linenumber of the file-state block identified by X.

13.6.10 Null

Example:

null{) or null

The result is a null pointer value.

13.6.11 Nullo

Example:
nullo() or nullo
Nullo is a nonstandard built-in function.

The result is a null offset value.

9/79 13=26.1 AG94D

13.6.12 Qffset

Examplé:
offset(X,Y)

X and Y must be scalar values. X must be a pointer value and Y must be an area
value.

Unless X identifies a generation of storage within Y, the program is in error.

The result R is an offset value that identifies the generation of storage
identified by X.

9/79 13-26.2 AGI94D

13.6.13 Pageno

Example:
pageno(X)
X must be a scalar file value.

If X does not identify an open file-state block with the <print attributed> the
program is in error.

The result R is a scalar, fixed-point; binary, real number of precision (35,0).

The value of R is the pagenumber of the file-state block identified by X.

13.6.14 Pointer

Example:
pointer(X,Y)

The pointer built-in function is a generic function with two entirely different
meanings that depend on the data types of X and Y. ’

13.6.14.1 The Standard Definition of Pointer

X must be a scalar offset value and Y must be a scalar area value.
Unless X identifies a generation of storage within Y; the program is in error.

The result R is a pointer value that identifies the generation of storage
identified by X. : .

13.6.14.2 The Nonstandard Definition of Pointer

The use of the nonstandard definition of the pointer function makes programs
dependent on the representation of pointer values in Multics PL/I.

X must be a scalar pointer wvalue and Y is converted to Y'. If Y is a
bit-string, Y' is a scalar bit-string of length 18; otherwise, Y' is a scalar,
fixed-point, binary, real value of precision (18,0).

The result R is a pointer value whose ring number and segment number are the
ring and segment numbers of X and whose word offset is given by Y. The bit
offset is zero.

The program is in error if X and Y do not satisfy the argument constrairts of
one of the two definitions of the function.

The pointer built-in funetion has two names: pointer and ptr.

T/79 13=-27 AGouc

13.6.15 el

Example:
rel(X)

Hei 1is a nonstandard built-in function and its use makes programs depend on the
representation of pointer values in Multics PL/I.

X must be a scalar pointer value.

The result K is a bit-string of length 13 whose value is the word offset portion
of X.

13.6.16 Size

Example:

size(X)

Size is a nonstandard built-in function and its use makes programs depend on the
internal representation of data in Multics PL/I.

X must be a <simple reference)> to a level-one variable.

The result is a fixed-point, binary, real number of precision (24,0) whose value
is the number of 36 bit words necessary to allocate a generation of storage for
X. Note that when X is a based variable with <refer option>s, this function
returns a value that depends on the <expression> contained in the <extent
expression>, not on the <reference)> contained in the <refer option>.

Example:

stac(X,Y)
Stac is a nonstandard built-in function and its use makes programs depend on the
Multics hardware. Coordination of Multics processes should be done by calls to
Multics locking primitives as described in the "Multics Programmers'’™ Manual".

X must be a scalar pointer value and Y must be a scalar bit-string of length 36.

If the 36 bit word addressed by the pointer is zero, the value of Y is assigned
to that word; otherwise, no .assignment is made.

The result R is a bit-string of length 1.

If the assignment of Y to the location identified by X was made, the value of R
is "1"b; otherwise, it is "O0"b.

The testing of X and the assignment of Y to X is an indivisible operation of the
Multics hardware.

13-28 AG94

13.6.17a Stacg

Example:
stacq(L,4,Q)

Stacq is a nonstandard built-in function and its use makes programs dependent on
Multies PL/I.

L must be a <reference> +to an aligned scalar bit-string variable of length 36.
A and Q must be bit-strings of length less than or equal to 36. The result R is
a bit-string of length 1. .

If L equals Q, the value of A is assigned to L, and the value of R is "1"p;
otherwise, no assignment is made and the value of R is "Q"b.

The testing for equality between L and Q and the conditional assignment of A to
L is an indivisible operation of the Multies hardware; refer to the description
of the stacq instruction in the Multies Processor Manual, Order No. AL39.

13.6.17b Stackbaseptr

Example:
stackbaseptr() or stackbaseptr

Stackbaseptr is a nonstandard built-in function and its use makes prcgrams
dependent on Multies PL/I.

Stackbaseptr returns a pointer to the base of the current <block>'s stack
segment.

13.6.17c Stackframeptr

Example:
Stackframeptr() or stackframeptr

Stackframeptr is a nonstandard built-in function and its use makes programs
dependent on Multies PL/I.

Stackframeptr returns a pointer to the stack frame containing the activation
record of the current <block>.

13.6.18 Time

Example:
time() or time

The value returned by the function is a character-string of length 12 whose
value is:

HHMMSSFFFFFF

where HH is the hour, 00 to 23; MM is the minute, 00 to 59; SS is the second, 00
to 59; and FFFFFF is the microsecond, 000000 to 999999,

T7/78 13-29 AG94B

13.6.19 Unspec

Example:
unspec(X)
X must be a <reference> to a variable.
The result R is a bit-string whose length and value depend on the data type,

aggregate type, and value of X. The value of R is the internal representation
of X.

13.6.20 Valid

Example:
valid(X)
X must be a <reference> to a scalar pictured value.
The result R is a bit-string of length 1. Its value is "1"b if the

character-string value of X can be edited into the {picture> declared for X;
otherwise, the value of R is "0"b.

13.6.20a Veclocek

Example:
velock or velock()

Velock is a nonstandard built-in function and its use makes programs dependent
on Multies PL/I.
™

1 result R is a fixed-point, binary, real value of precision (71,0).

The value of R 1is the number of microseconds of virtual CPU time used by the
calling process.

7/78 , 13-30 AG94B

APPENDIX A

Differences Between Multics PL/I and Standard PL/I

This appendix lists all known deviations of the Multies PL/I language from
the Americezn Hatlsnal Standard Programming Language PL/I, ANSI X3.53-1976, as of
March, 1981,

The features that are marked with a + are not detected by the -check_ansi
control argument of the pl1 command.

Features of the Standard Not in Multies PL/I:

1.
2.
3.

The tab option and tab format item.
The "t", "im" and "r® picture characters,

The every and some built-in functions.

Features Restricted in Multies PL/I:

1.

2.

3781

Only one <prerii subseript> is permitted in a <label prefix>.

The <condition name>s defined by the language are reserved such that a
user-defined condition cannot have the same name as a language defined
condition.

A <condition name> cannot have internal scope.

The <extent>s of static variables must be <decimal integer>s, and the
<{expression>s in the <initial attribute> of a3 statie variable are
restricted to optionally signed <literal constant>s, pairs of real and
imaginary signed <literal constant>s, or the null and empty built-in
functions,

The <label prefix> of a {procedure statement), {entry statement>, or
{format statement> cannot contain a <prefix subsecript>. ’

The string built-in function requires that its argument be a scalar,
or an aggregate of packed bit-string or packed character-string data.

The alignment attributes of two structures must mateh if the two structures
are to share storage.

All <condition prefix>s of a statement must precede any <label prefix>s
of the statement,

An area variable cannot be used as the <index> of a <do statement).

A-1 AG9UE

12.

13.

15.

19,

20.

21.

Defined variables whose <defined attribute) contains <isub>s or asterisks
cannot be input or output by a {get statement> or <put statement> that
specifies data-directed transmission.

File constants cannot have the <dimension attribute>.

If the <expression> of an (assignment statement> is a <reference) that
identifies a scalar string variable, then no <target> of the
<assignment statement)> can identify a generation of storage that overlaps
the generation of storage of the string variable, unless it is exactly
the same generation or unless the generation of the <target> does not
start to the right of the generation of the string variable,.

An unconnected array cannot be passed to an array parameter declared
with constant extents; asterisk extents must be used.

When an array i{s defined onto another array by simple defining, the
<base reference> must contain an asterisk for each dimension of the
defined array.

The pointer value yielded by "addr™ of a parameter is valid only so
long as the block activation to which the corresponding argument was
passed is still active.

The standard allows an array of scalars to be promoted to an array of
structures, but Multics PL/I does not allow this promotion.

A simple or isub defined variable must have extents that equal the
corresponding extents of the base variable on which it is defined.
The standard allows such extents to be less than or equal to the
extents of the base variable.

In structure promotion of the form s=r or s+r, Multies PL/I requires
that the aggregate type of each member of s match the aggregate type
of the corresponding member of r. The standard performs aggregate
promotion for each member that does not match.

The dot built-in funetion requires that the precision of its result be
given in the function reference.

Both the <ignore option> and a <{key spec> cannot be given in the same
{read statement>.

If a completed <attribute set> contains a <{position attribute>, that
<{position attribute> must contain a {position>. The standard has a
system default of 1.

The min and max built-in functions must have at least two arguments;
the standard allows them to have one argument, '

If an item has the <parameter attributed> or is part of a <deseriptor>,
the <extent expression> must be an unsigned <{decimal integer>.

Features Implemented at Variance with the Standard:

3781

The <bound>s of an evaluated array expression are always normalized
such that each lower <bound> is one and each upper <bound> i3 the
number of elements in the dimension.

A mismatch between the alignment attributes of a structure and a structure
parameter descriptor causes the argument to be passed by-value, rather
than bye-reference. The standard ignores the alignment attributes of
structures.,

A=2 ’ AGY4E

+ 3. The stringsize condition is disabled by default in Multics PL/I, but
enabled by default in standard PL/I.
Extensions:
1. An <identifier> can contain the special character "$", and in the case
of external names, this character has additional semantics.

2. Varying strings can be used in simple or isub defining.

3. The base variable identified by a <defined attribute> can be a based
variable.

+ 4. Most restrictions on the <refer option> are removed.

5. Seversl new built-in functions are implemented.

6. The <local attribute> is allowed in all {descriptor>s.

+ 7. If the current position of a file is well defined, a <key option> is
not needed in a <delete statement> or {rewrite statement> operating on
a. direct file,.

+ 8. New records can be written into a keyed sequential update file. (The
locate statement may be used for this purpose.)

+ 9. Partially qualified references are allowed in stream input scanned by
data-directed input.

+ 10, An <in.opt16n> 1s not required in a <free statement)> when freeing a
generation of storage allocated in an area.

+ 11. The "recursive® keyword is never required in a {procedure statement>.

12. The <unspec pseudo> and unspec built-in function allow aggregate
arguments.

+ 13. Assignments and infix operations can be performed on two arrays of
unequal <bound>s if the number of dimensions is equal and the number
of elements in each dimension of one array is equal to the number of
elements in the corresponding dimension of the other array.

+ 14. A replication factor in a <{picture> can be zero, indicating that the
<picture char> to which it applies is to be deleted from the
<normal picture> produced by translation of the <picture),

15. A name declared with the <environment attribute> will acquire the
<file attribute> by application of the language default rules. 4 name
declared with the {options attributed will acquire the <entry attribute)
by application of the language default rules unless the parenthesized
keyword "constant" is specified. The standard gives no defaults for
these cases.

+ 16. Multies PL/I allows a {column format> to be used by a <get statement>
or <{put statement) containing a <string option>.

+ 17. When an array is passed as an argument to an array parameter which has

3/81

different <bound>s but equal extents, the standard says that the program
1s in error. Multies PL/I assigns the argument to an array temporary
whose <bound>s are equal to the <bound>s of the array parameter.

A-3 AG94E

3/81

18.
19.
20.

21,
22.
23.

24,

25.

26.

27.

28.

29.
30.
31.

32.

A <picture scale factor> is allowed for floating-point <picture>s.

The <reducible attribute) and <irreducible attribute>s are allowed.

No delimiter is required between the keywords "picture" or "pic" and
the quoted <picture> in a <picture attribute>. No delimiter is required
between the letter "p" and the quoted <picture> in a <picture format>.
Any data type except area is allowed in put list and put data.

ASCII tab characters in an input data stream get special treatment.
The <options attribute> with the parenthesized keyword ™"constant"
specified may be used with any computational variable containing the
<{static attribute> and the <internal attribute>.

<{default statement>s may appear in any block.

A <returns attribute> of the form returns () is permitted. (Of course
{returns descriptor>s must then be supplied during default processing.)

The pointer built-in function may take a pointer as its first argument
and any computational expression as its second argument.

The fixed and float built-in functions may take as few as one argument.
(The standard requires two arguments.)

The <read statement> and the <write statement) may be used with stream
data sets to read and write 3 line, respectively.

The <unsigned attribute> and {signed attribute>s are allowed.
A <programmer-defined condition name> may be an <identifier>,

ASCII newline characters, horizontal tab characters, vertical tab
characters, and newpage characters are delimiters.

The <member attribute>, <structure attribute>, and <parameter attributes>
are allowed in the <attribute set> of a <default statement>.

A=l AG94E

INDEX

This index contains every <notation variable> defined by the syntax rules. It
also contains every underlined term defined in prose, as well as a few general
terms not defined in prose. For each <notation variable> the only sections

abs built-in function
13.2.1 Abs 13-8

acos built-in function
13.3 The Mathematical Built-in Functions 13-18

activated
See block activation

activation record
See block activation

add built-in function
13.2.2 Add 13-9

addr built-in funection
13.6.1 Addr 13-24

addrel built-in function
13.6.2 Addrel 13-2%

after built-in function
13.1.1 After 132

aggregate type
4.2 Aggregates of Data 4-7
4.2.1 Arrays of Scalars 4-7

4.2.2 Structures 4.8

4.2.3 Arrays of Structures 4-8

4.3.2.5 Based Storage 4-12

4.3.3.2 Storage Sharing by Based Variables 4-15
4.3.3.6 String Overlay Defining i-i9

6.10.2 Argument Conversion and Promotion 6-9

7. Expressions 7-1

9. Promotion of Aggregate Types 9-1

9.1 Contexts That Force Promotion 9-1

3.2 Types of Promotion 9-2

9.3 Promotion Rules 9-2

12.2 The Assignment Statement 12-2

12,24 The Return Statement 12-37.1

13.2 Arithmetic Built-In Functions 13-8

13.3 The Mathematical Built-In Functions 13-17

aggregate value
See aggregate type

<aligned attribute>
S5.4.1 Aligned 5-15

<alignment>
5.5 Attribute Consistency 5-32

<allocate statement>
k.brf
12.1 The Allocate Statement 12-1

<allocation>
12.1 The Allocate Statement 12-1

allocation
3.3.1 Block Activation 3=2
3.6.2 Procedures 3-4
4.3.2.1 Allocation of Storage 4-11
2.2 Automatic Storage 4-11
2.3 Static Storage 4-12
<4 Controlled Storage 4-12
.5 Based Storage 4-12
S Initial 5-23
«1 Area Condition 10-4
10.4,13 Storage Condition 10-9
12.1 The Allocate Statement 12-1
12.13 The Free Statement 12-18
12.17 The Locate Statement 12-25
13.6.3 Allocation 13-2%

2
2
2

— N I b

3
3
3
3
a4

0.4

3781 i1 AGI4E

allocation built-in funetion
13.6.3 Allocation 13-24

<allocation reference> .
12.1 The Allocate Statement 12-1
12.17 The Locate Statement 12-25

allocn built-in function
13.6.3 Allocation 13-24

<alternative>
5.4.28 Generic 5-22
6.9 Generic References 6-7

<alternative list>
5.4.28 Generic 5-22
6.9 Generic References §-7

<any nonquote>
12.14 The Get Statement 12-19

applicable declaration
6.5 Reference Resolution and Ambiguity 6-4

{area attribute)
5.4.2 Area 5-15

<area condition name> .
10.4.1 Area Condition 10-i4

{area size>
5.4.2 Area 5-15

area value
B.1.8 Area Data u4-4
5.4.2 Area 5-15
7.3.4.2 Types of Comparison 7-10
8.2 Conversion Rules 8-2

£arg selector>
5.43.28 Generic 5-22
6.9 Generic References 6-7

argument

4.3.3.1 Storage Sharing by Parameters 8-15

5.4.17 Entry 5-19

6.5 Reference Resolution and Ambiguity 6-4

6.7 Function References 65

6.8 Built-In Function References 6-7

6.9 Generic References 6-7

6.10 Parameters and Arguments 6-8

6.10.1 Argument Passing By-value or By-reference 6-8
6.10.2 Argument Conversion and Promotion 6-9

6.10.3 Asterisk and Constant Extents of Parameters 6-9
6.10.4 Storage of a Parameter 6-9

8.1 Contexts That Force Conversion 8-1

9.1 Contexts That Force Promotion 9-1

12.8 The Call Statement 12-6

12.11 The Entry Statement 12-13

12.21 The Procedure Statement 12-29

{argument list>
6.7 Function References 6-5
12.8 The Call Statement 12-6

arithmetic)>
5.5 Attribute Consistency 5-32

Carithmetic constant>
2.6.2.3 Arithmetic Constants 27

arithmetic operators
7.3.1 Arithmetic Operators 7«5

arithmetic value
2.6.2.3 Arithmetic Constants 2-7
3.1.5 Arithmetic Data 8-2
5.4.5 Binary 5-16

(ool R B R RV RV RV RV}

e e o 2 2 0 0 o @

NN WWIW I &
»

3/81

9 Complex 5-17

3 Decimal 5-18
9 Picture 5-27

WAN N -

Real 5-29

Operand Conversion for Arithmetic Operators 7-5
Results of Arithmetic Operators 7-6

Types of Comparison 7-10
haracter-String to Arithmetic Conversion 8-3
it-String to Arithmetic Conversion 8-4

i-2

AGY4E

.7 Arithmetic to Character-String Conversion 8-5
<8 Arithmetic to Bit-String Conversion 8-7

8.2

8.2.8

3.2.10 Arithmetic Type, Base and Precision Conversion 8-3
2.1

.12 Picture Controlled Conversion 8-15

<array>
5.5 Attribute t>nsistency 5-32

array of scalars
4.2.1 Arrays of Scalars 4-7
4.3.1.3 Packing and Alignment of Arrays 4-10
9.2 Types of Promotion 9-2
9.3 Promotion Rules 9-2

array of structures
4.2.3 Arrays of Structures 4-8
4.3.1.2 Packing and Alignment of Structures 4-9
4.3.1.3 Packing and Alignment of Arrays 410
9.2 Types of Promotion 9-2
9.3 Promotion Rules 9-2

array-extent
8.2 Aggregates of Data #4-7
See aggregate type

asin built-in function
13.3 The Mathematical Built-in Functions 13-18

{assignment statement>
12.2 The Assignment Statement 12-2

atan built-in function
13.3 The Mathematical Built-in Functions 13-18

atand built-in function
13.3 The Mathematical Built-in Functions 13-18

atanh builte-in funetion
13.3 The Mathematical Built-in Functions 1318

attribute)
Although this <notation variable> is not formally
defined by a syntax rule, <attribute> must be
one of the <attributed>s defined in section 5.4 {(p 5-15)

{attribute keyword>
5.3.1 Default Statement 5-11
12.7 The Default Statement 12-8

{attribute set>
5.2.1 Declare Statements 5-2
5.2.1.1 Defactoring of Declare Statements 5-3
5.3.1 Default Statement 5-11
5.4.17 Entry 5-19
5.8.24 Generic 5-22
S5.4.47 Returns 5-30
6.9 Generic References 6-7
12.6 The Declare Statement 12-7
12.7 The Default Statement 12-8

{automatic attribute>
S.8.3 Automatic 5-16

automatic storage
4.3.2.1 Allocation of Storage 4-11
4.3.2.2 Automatic Storage 4-11

base
4.1.5 Arithmetic Data 4-2

<base reference)>
4.3.3.3 Storage Sharing by Defined Variables 4-16
S.4.14 Defined 5-18

base variable
8.3.3.3 Storage Sharing by Defined Variables 4-16

<based attribute>
5.4.4 Based 5-16

<based reference)
6.6 Locator Qualified References 6-5

based storage

4.3.2.1 Allocation of Storage 4-11
4.3.2.5 Based Storage 4-12 -

3/81 i3

AG94E

baseno built-in funetion
13.6.4 Baseno 13-24

baseptr built-in funection
13.6.5 Baseptr 13-25

{basic expression>

7.2 Formal Syntax of Expressions 7-4

before built-in function
13.1.2 Before 13-2,1

<begin block>

2.2 Blocks and Block Structure 2-1

<begin statement>
12.3 The Begin Statement 12-6

bin built-in function
13.2.3 Binary 13-9

<binary attribute>
5.4.5 Binary 5-16

binary built-in function
13.2.3 Binary 13-9

<binary constant>
2.6.2.3 Arithmetic Constants 2-7

<binary digit>
2.6.2.3 Arithmetic Constants 2-7

<binary integer>
2.6.2.3 Arithmetic Constants 2-7

<binary number>

-<bit attribute>

2.6.2.3 Arithmetic Constants 2-7

S.8.6 Bit

5=-16

bit built-in function
13.1.3 Bit 13-3

<bit-string constant>
2.6.2.1 Bit-String Constants 2-6

<bit-string format)>
8.2.11.5 Bit-String Format 8-14

12.12 The

<blank>

1.2.3 A Formal Definition of the Meta-Language 1-3
2.6.4 Delimiters, Blanks and Comments 2-8

<block>
2.2 Blocks and Block Structure 2-1

Format Statement 12-14

bloek activation

3/81

Wwwwwiw

2 © o 6 ¢ & 4 6 2 0 4 & @

On

~~J NS EEEE W

o

«3.1 Bloeck Activation 3-2
3.2 Environment of a Bloek Activation 3=2

4 Flow of Control Within a Bloeck Activation 3-3
5 Local and Nonlocal Goto Statements 3-3

6.1 Begin Blocks 3-3

2 Procedures 3-3

3 Units 3-8

9 Label Data 4-4

10 Format Data 4-S

11 Entry Data 4.5

2.2 Automatic Storage 4-11
3.2 Storage Sharing by Based Variables 4-15
3.3 Storage Sharing by Defined Variables 4-16
Parameters and Arguments 6-8
4.2 Types of Comparison 7-10
Signals and On-Units 10-2

12.3 The Begin Statement 12-6
12.4 The Call Statement 12-6

12,10 The
12.11 The
12.15 The
12.19 The
12.21 The
12.24 The
12.25 The

End Statement 12-12
Entry Statement 12-13
Goto Statement 12-2%4
On Statement 12-27

Procedure Statement 12-29

Return Statement 12-37.1
Revert Statement 12-38

13.5.6 Onloc 13=23

1-8

AG94E

<block component>
2.2 Blocks and Block Structure 2-1

blocked
3.2 A Multics PL/I Program 3-1

bool built-in function i
13.1.4 Boo0l 13-3

<bound>
S.4.15 Dimension 5-18

braces
1.2.2 Syntax Expressions 1-2

brackets
1.2.2 Syntax Expressions 1-2

built-in functions
6.8 Built-In Function References 6-7
13. Built-In Functions 13-1

<builtin attribute>
S.4.7 Builtin 5-17

<builtin set>
5.5 Attribute Consistency 5-32

{by-name option>
12.2 The Assignment Statement 12-2

by-reference E
4.3.3.1 Storage Sharing by Parameters 4-15
6,10.1 Argument Passing By-value or By-reference 6-8
6.10.3 Asterisk and Constant Extents of Parameters 6=-9

by-value
4.3.3.1 Storage Sharing by Parameters 4-15
6.10.1 Argument Passing By-value or By-reference 6-8
6.10.2 Argument Conversion and Promotion 8-9
6.10.3 Asterisk and Constant Extents of Parameters 6-9

byte built-in function I
13.1.4a Byte 13-3

<call statement>
12.3 The Call Statement 12-6

ceil built-in function
13.2.4 Ceil 13-10

char built-in function
13.1.5 Character 13-3.1

<character>
2.6.2.2 Character-String Constants 2-6

{character attribute>
5.4.8 Character 5-17

character built-in function
13.1.5 Character 13-3.1

<character pictured>
8.2.12.1 Syntax of Pictures 8-15

{character-string constant>
2.6.2.2 Character-String Constants 2-6

{character-string format>
8.2.11.4 Character-String Format 8-13
12.12 The Format Statement 12-14

clock built-in funetion .
13.6.5a Clock 13-25

<close statement)>
12.5 The Close Statement 12-7

{closure label>

2.4 Multiple Closure of Groups and Blocks 2-3
12.10 The End Statement 12-12

codeptr built-in function
13.6.5b Codeptr 13-25

3/81 i-5 AG94E

collate built-in function
13.1.6 Collate 13-4

collate9 built-in function
13.1.6a Collated 13-4

{column format>
12.12 The Format Statement 12-14

columnposition
11.2 File Values and File-State Blocks 11-1
11.3 Opening a File 11=3
12,12 The Format Statement 12-14
12.14 The Get Statement 12-19
12.22 The Put Statement 12-30

{comment>
2.6.4 Delimiters, Blanks and Comments 28

<{complex attribute>)
5.4.9 Complex 5-17

complex built-in function
13.2.5 Complex 13-10

<complex format>
8.2.11.3 Complex Format 8-13
12.12 The Format Statement 12-14

{condition attribute>
5.4.10 Condition S5-17

<condition list>
12.25 The Revert Statement 12-38

<condition name>
10.4 PL/T Conditions 10-4
12.19 The On Statement 12-27
12.25 The Revert Statement 12-37.1
12.27 The Signal Statement 12-39

condition name
10.1 Conditions and Condition Names 10-1
10.4 PL/I Conditions 10-4

<condition prefix>
2.5.1 Statement Prefixes 2-4
10.2 Condition Prefixes 10-1

<condition. setd>
5.5 Attribute Consistency 5-32

conditions
2.5.1 Statement Prefixes 2-4

3.6.3 On Units 3-4

4.1.5 Arithmetic Data 8-2

4.3.3.3 Storage Sharing by Defined Variables 4-16
5.4.10 Condition 5-17

7.1.6 Expression Evaluation and Conditions 7-3
8.2.3 Character-String to Arithmetic Conversion 8-3
10.1 Conditions and Condition Names 10-1

10.2 Condition Prefixes 10-1

10.3 Signals and On-Units 10-2

10.4 PL/I Conditions 10-4

10.4,21 Multics and Programmer Defined Conditions 10-11
11.5 Conditions and Files 11-6

12.19 The On Statement 12-27

12.25 The Revert Statement 12-38

12,27 The Signal Statement 12-39

13.5 Condition Built-In Functions 13-22

conforms
8. Conversion of Data Types 8-1
9. Promation of Aggregate Types 9-1

conjg built-in function
13.2.6 Conjg 13=11

connected
4.3.1.3 Packing and Alignment of Arrays U4-10
%.3.3.2 Storage Sharing by Based Variables 4-15
6.3 Cross-Section References 6=-3
6-10.3 Asterisk and Comstant Extents of Parameters 6-9
12.2 The Assignment Statement 12-2
12.23 The Read Statement 12=35
12.26 The Rewrite Statement 12-38

3/81 i-6 AG94E

12.28 The Write Statement 12-41
13.6.1 Addr 13-24

<{consistent attribute set)
5.5 Attribute Consistency 5-32

<{consistent file description>
5.5 Attribute Consistency 5-32
11,3 Opening a File 11-3

{constant attribute>
5.4.11 Constant 5-18

constants
2.6.2 Literal Constants 2-5
. 2.5.2.1 Bit-String Constants 2-5
2.6.2.2 Character-String Constants 2-6
2,6.2.3 Arithmetic Constants 2-7
1.2 Constants 41
1.9 Label Data 4-3
1.10 Format Data 4-5
1.11 Entry Data 2.5
1.12 File Data 4-6
2.1 Arrays of Scalars 4.7
2.6 Establishment of Implicit Declarations 5-10
3 Completion of Attribute Sets 5-10
3.2 Evaluation of Default Statements 5-12
3.3 Language Default Rules 5-13
4.11 Constant 5-18
Expressions 7-1
1.1 Evaluation of Primitive Expressions 7-1
.2 File Values and File-State Blocks 11-1
.5

y
3
I
3
4
3
5
5
5
5
5
7
7
1
1 Conditions and Files 11-8

1
1

contained
2.1 External Procedure 2-1
2.2 Blocks and Block Structure 2-1
5.1 Scope of a Declaration 5-1

<containing reference>
6.4 Structure Qualified References 6=3

<econtrol>
12.9 The Do Statement 12-9

control
See flow of control

control character
11.1.1 Stream Data Sets 11-1
12.12 The Format Statement 12-14

<control format>
12.12 The Format Statement 12-14

<controlled attribute>
5.4.12 Controlled 5-18

controlled storage
4.3.2.1 Allocation of Storage %-11
4.3.2.4 Controlled Storage 4<12

{conversion condition name>
10.4.2 Conversion Condition 10=-5

conversion rules
7.3.1.1 Operand Conversion for Arithmetic Operators

Arithmetic to Bit-String Conversion 8-7

Arithmetic Mode Conversion 8-7

.10 Arithmetic Type, Base and Precision Conversion 8-8
+11 Format Controlled Conversion 8-9

+12 Picture Controlled Conversion 8-15

3

3

5

6

g Arithmetic to Character-String Conversion
9

1

1

7-5

7.3.2.1 Operand Conversion for Bit-String Operators 7-8
7+3.3.1 Operand Conversion for Concatenation 79
7.3.%.1 Operand Conversion for Relational Operators 7-10
8.2.1 Pointer to Offset Conversion 8-3
8.2.2 Offset to Point-~r Conversion 8-3
8.2. Character-String to Arithmetic Conversion 8-3
8.2.4 Character-String to Bit-String Conversion §-4
8.2.5 Bit-String to Arithmetic Conversion S-4
g. .6 Bit-String to Character-String Conversion g-S

2 -5
8.
8.
8.
8.
8.

NNNN:\)NNNN

convert built-in function
13.6.6 Convert 13-26

3781 i-7 AG94E

copy built-in function
13.1.7 Copy 13-4

<copy option>
12.14 The Get Statement 12-19

cos built-in function

13.3 The Mathematical Built-in Functions 13-18

cosd built-in function

13.3 The Mathematical Built-in Functiqns 13=-18

cosh built-in function

13.3 The Mathematical Built-in Functions 13<18

cplx built-in function
13.2.5 Complex 13-10

cross-section

8.3.1.3 Packing and Alignment of Arrays 3-10

6.3 Cross-Section References 6-3

6.4 Structure Qualified References 6-3
6.10.3 Asterisk and Constant Extents of Parameters 6§-9

current length
4.1.6 String Data 4-3

12.2 The Assignment Statement 12-2

12.22 The Put Statement 12-30

currentrecord

11.2 File Values and File-State Blocks 11-1

11.3 Opening a File 11-3

11.4 Closing a File 115§

12.8 The Delete Statement 12-8
12.17 The Locate Statement 12-25
12.23 The Read Statement 1235
12,26 The Rewrite Statement 12-38
12.28 The Write Statement 12-41

-currentsize built-in function

13.6.6a Currentsize 13-26

<d>
8.2.11.1 Fixed-Point Format 8-9

8.2.11.2 Floating-Point Format 8-11

12.12 The Format Statement 12-14

data character
11.1.1 Stream Data Sets 111

11.2 File Values and Fiie-State Blogks 111

12.14 The Get Statement 12-19

<{data format>
12.12 The Format Statement 12-14

data set
4.1.12 File Data 4§
17.7.1 Stream Data Sets 11-1
11.1.2 Record Data Sets 11-1

11,2 File Values and File-State Blocks 11-1

11.3 Opening a File 11-3
11.4 Closing a File 11-§

{data type>

5.5 Attribute Consistency 5-32
data type '
Representation of Data 4-1
Variables 41

1

3

y

S Arithmetic Data 4.2
6 String Data -3

7 Locator Data 4-3

8 Area Data 4-4

9 Label Data 48

10 Format Data 4.5

11 Entry Data 4-5

12 File Data 3.6
Aggregates of Data 4-7
3 Storage Sharing iU-14
2 Area 5-15

6 Bit 5-16

8 Character 5-17

17 Entry 5-19

20 File 5-21

21 Fixed 5-21

22 Float 5-22

3/81

Data Types of Expressions and Functions 4.2

AGY4E

4.23 Format 5-22

3,30 Label 5-25

35 Offset 5-26

39 Picture 5-27

40 Pointer 5-28

51 Structure 5-30.1

0.2 Argument Conversion and Promotion 6-9
-8.2 Types of Comparison 7-10

Conversion of Data Types 8-1

date built-in function
13.6.7 Date 13-26

dec built-in function
13.2.7 Decimal 13-11

decat built-in funection ’
13.1.8 Decat 13-3

{decimal attribute>
5.4.13 Decimal 5-18

decimal built-in function
13.2.7 Decimal 13-11

<decimal constant>
2.6.2.3 Arithmetic Constants 2-7

{decimal integer>
2.6.2.3 Arithmetic Constants 2-7

<decimal number>
2.6.2.3 Arithmetic Constants 2-7

declaration
5. Declarations S-1
6. References 6-1

<declaration component>
. 5.2.1 Declare Statements 5-2
12.6 The Declare Statement 12-7

{declaration list>
5.2.1 Declare Statements 5-2
12.6 The Declars Statement 12-7
{declare statement)>
5.2.1 Declare Statements 5-2
12.6 The Declare Statement 12-7

<declared name>
2.5.1 Statement Prefixes 2-4
5.2.1.1 Defactoring of Declare Statements 5-3
5.2.1 Declare Statements 5-2
12,6 The Declare Statement 12-7

{defactored declaration)>
5.2.1 Declare Statements 5-2

{defactored declare)
5.2.1.1 Defactoring of Declare Statements 5=3

default rules

5.2 Establishment of Declarations S=2

5.2.5 Contextually Derived Attributes 5-9

5.2.6 Establishment of Implicit Declarations 5-10

5.3 Completion of Attribute Sets 5-10
5.3.3 Language Default Rules 5=13
11.2 File Values and File-State Blocks 11=-1
<{default statement>

5.3.1 Default Statement S5-11

5.3.2 Evaluation of Default Statement 5-12

12.7 The Default Statement 12-8

<defined attribute>

8.3.3.3 Storage Sharing by Defined Variables 4-16
5.4.14 Defined 5-18

<delete statement>
12.8 The Delete Statement 12-8

<delimiter>
2.6.4 Delimiters, Blanks and Comments 2-8

-~

3/81 i-9 AG93E

<descriptor>
S.4.17 Entry 5-19
5.4.47 Returns 5-30

<descriptor set>
5.5 Attribute Consisteney 5-32

<digit>
2.6.1 Identifiers 2-5
2.6,2.3 Arithmetic Constants 2-7

<digit positions>
8.2.12.1 Syntax of Pictures 8-15

<digits>
8.2.12.1 Syntax of Pictures 8-15

dim built-in function
13.4.1 Dimension 13-20

{dim key>
5.4.15 Dimension 5-18

<dimension attribute)>
5.4.15 Dimension 5-18

dimension built-in funection
13.4,1 Dimension 13-20

{direct attribute>
5.4,16 Direct 5-19

direct data set
11.1.2 Record Data Sets 111

<direct deseription>
5.5 Attribute Consistency 5-32
11.3 Opening a File 11-3

.disabled (condition)
10.2 Condition Prefixes 10-1

{disabled condition>
10.2 Condition Prefixes 10-1

divide built-in function
13.2.8 Divide 13-11

<do statement>

<do while>
12.9 The Do Statement 12-9

dot built-in function
13.4.2 Dot 13-20

<drifting doliar>
8.2.12.1 Syntax of Pictures 8-15

{drifting field>
8.2.12.1 Syntax of Pictures 8-15

<drifting sign>
8.2.12.1 Syntax of Pictures 8-15

dynamic descendent
3.3.2 Environment of a Block Activation 3-2

dynamic linking
3.2 A Multics PL/I Program 3-1

dynamic predecessor
3.3.1 Block Activation 3-2
3.3.2 Environment of a Block Activation 3=2
3.6.1 Begin Blocks 3-3

editing
8.2.12 Picture Controlled Conversion 8-15

elements
4.2.1 Arrays of Scalars 4-7
4.2.3 Arrays of Structures 4-8
4,3.1.3 Packing and Alignment of Arrays 4-10
4.3.3 Storage Sharing 4-14
5.8.25 Initial 5-23
9.3 Promotion Rules 92

3/781 i-10

{else clause)>
12.16 The If Statement 12-25

empty built-in function
13.6.8 Empty 13-26

<enabled condition>
10.2 Condition Prefixes 10-1

enabled condition
10.2 Condition Prefixes 10-1

encoding

8.2.12 Picture Controlled Conversion 8-15

<end statement)>

2.5 Hultiple Closure of Groups and Blocks 2-

12.70 The End Statement 12-12

<endfile condition name>
10.4.3 Endfile Condition 10-5

<endpage condition name>
10.4.% Endpage Condition 10-5

<entry>
5.5 Attribute Consistency 5-32

{entry attribute>
5.4,17 Entry 5-19

entry constant
See entry value

<entry option>
12.11 The Entry Statement 12-13

<entry reference)
5.4.24 Generic 522
6.7 Function References 6-5
6.9 Generic References 6-7
12.4 The Call Statement 12-6

<entry statement>
12,11 The Entry Statement 12-13

entry value

3.3.2 Environment of a Block Activation 3-2

8.1.11 Entry Data 4.5
S5.4.17 Entry S-19
5.8.28 Irreducible 5-28
5.8.36 Options 5-26
5.4.36 Reducible 5-29
6.7 Function References 6-5
6.8 Built-In Function References 6-7
6.9 Generic References 6-7
T7.3.8.2 Types of Comparison 7-10
12.4 The Call Statement 12-6
<environment attribute>

5.4.18 Environment 5-290

environmentptr built-in function
13.6.8a Environmentptr 13-26.1

equivalenced based generation
4.3.2.5 Based Storage %-12

erf built-in function

13.3 The Mathematical Built-in Functions 13-18

erfc built-in function

13.3 The Mathematical Built-in Functions 13.18

<error condition name>
10.8.5 Error Condition 10-6

error_output
To.4 PL/I Conditions 10-4

established
3.6.3 On Units 3-8
10.3 Signals and On-Units 10-2

evaluate

6. References 6-1 .
7. Expressions 7-1

3/81 i-11

AGYAE

{executable unit)>
12.16 The If Statement 12-25

exp built-in function
13.3 The Mathematical Built-in Functions 13-18

explicitly allocated based generation
4.3.2.5 Based Storage 4-12

<exponent>
2.6.2.3 Arithmetic Constants 2-7

exponent
4.1.5 Arithmetic Data 4-2
7.3.1.2.3 Special Cases of Exponentiation 7-7
8.2.11.2.1 Floating-Point Input Conversion 8-11
8.2.11.2.2 Floating-Point Output Conversion 8-12
8.2.12.4 Floating~Point Picture Conversion 8-20
10.4.10 Overflow Condition 10-8
10.4.19 Underflow Condition 10-11

<exponent field>
8.2.12.1 Syntax of Pictures 8-15

<expression>
7.2 Formal Syntax of Expressions 7-4

expression
1.2.2 Syntax Expressions 1.2

7.2 Formal Syntax of Expressions 7-4

. {expression five>
7.2 Formal Syntax of Expressions 7-4

<expressicn four>
7.2 Formal Syntax of Expressions 7-4

<expression one)>
7.2 Formal Syntax of Expressions 7-4

{expression seven)>
7.2 Formal Syntax of Expressions 7-4

<expression six>
7.2 Formal Syntax of Expressions 7-2

<expression three>
7.2 Formal Syntax of Expressions 7-4

<expression two>
7.2 Formal Syntax of Expressions 7-4

<extent expression>
3.2.5 Based Storage 4-12
4.2 Area 5-15

4.6 Bit 5«16

4.8 Character 5-17

4,15 Dimension 5-18
<external attribute>

5.4.19 External 5-21

<external procedured>
2.1 External Procedure 2-1

external scope
5.1.2 External Scope 5-1

<factor>
5.8.25 Initial 523

file
See file-state block

<file attribute>
5.4.20 File 5-21

{file get>
12.14 The Get Statement 12-19

3/81 i-12

1.2.3 A Formal Definition of the Meta-Language 1-3
3.6.2 Procedures 3-4

4.1.4 Data Types of Expressions and Functions 4.2
7.1.1 Evaluation of Primitive Expressions 7-1
7.1.2 Evaluation of Prefix Expressions 7-1

7.1.3 Evaluation of Infix Expressions 7-2

7.1.4 Order of Evaluation 7-2

7.1.6 Expression Evaluation and Conditions 7-3

AGY4E

<file get option>
12.14 The Get Statement 12-19

<file option>

12.5 The Close Statement 12=-7
12.8 The Delete Statement 12-8
12,14 The Get Statement 12-19
12.17 The Locate Statement 12-25
12.20 The Open Statement 12-28
12.22 The Put Statement 12-30
12.23 The Read Statement 12-35
12.26 The Rewrite Statement 12-38
12.28 The Write Statement 12-41

{file put>
12.22 The Put Statement 12-30

<file put option>
12.22 The Put Statement 12-30

file value
See file-state block

file-state block
4.1.12 Fi e Data 4-6
5.4.18 Environment 5-20
S.4.18 Environment 5-20

5.4.32 Local 5-25

5.4.37 Output 5-27

5.8.43 Print 5-29

5.4.45 Record 5-29

5.4.43 Sequantial 5-30

5.4.50 Stream 5-30.1

5.4.53 Update 5-32

7.3.4.2 Types of Comparison 7-10
11.2 File Values and File-State Blocks 11-1
11.5 Conditions and Files 11-§
12.2 The Assignment Statement 12-2

12.5 The Close Statement 12-7
12.8 The Delete Statement 12-8
12.12 The Format Statement 12-14
12.18 The Get Statement 12-19
12.17 The Locate Statement 12-25
12.20 The Open Statement 12-28
12,22 The Put Statement 12-30
12.23 The Read Statement 12-35
12.28 The Write Statement 12-41
13.6.9 Lineno 13-26.1

13.6.13 Pageno 13-27

filedescription
11.2 File Values and File-State Blocks 11-1
11.3 Opening a File 11=3

filename
11.2 File Values and File-State Blocks 11=1
11.3 Opening a File 11=3
13.5.4 Onfile 13-23

{finish condition name>
10.4.6 Finish Condition 10-6

<first>
12.9 The Do Statement 12-9

<fixed attribute>
5.4.21 Fixed 5-21

fixed built-in funection
13.2.9 Fixed 13-12

{fixed field>
8.2.12.1 Syntax of Pictures 8-15

<fixed-point format>
8.2.11.1 Fixed-Point Format 8-9
12.12 The Format Statement 12-14

<fixed-point picture>
8.2.12.1 Syntax of Pictures 8-15

<{fixedoverflow condition name>
10.3.7 Fixedoverflow Condition 10-7

<float attribute>
5.4.22 Float 5-22

3/81 1-13 ‘ AG94E

float built-in function
13.2.10 Float 13-12

{floating-point format>
8.2.11.2 Floating-Point Format 8-11
12.12 The Format Statement 12-14

{floating-point picture>
8.2.12.1 Syntax of Pictures 8-15

floor built-in function
13.2.11 Floor 13-12

flow of control
3.1 Flow of Control 3-1
3.3.1 Block Activation 3-2
3.3.2 Environment of a Block Activation 3=2
3.8 Flow of Control Within a Block Activation 3-3
10.3 Signals and On-Units 10-2

<{format attribute>
5.4.23 Format 5-22

format constant
See format value

{format item>
12.12 The Format Statement 12-14

<format part>
8.2.11.3 Complex Format 8-13
12.12 The Format Statement 12-14

{format specification>
12.12 The Format Statement 12<14

{format specification listd>
12.12 The Format Statement 12-1l4

{format statement)
12.12 The Format Statement 12-14

format value
4.1.10 Format Data 4-5
5.4.23 Format 5-22
5.8.32 Loecal 5-25
12.12 The Format Statement 12-14

<fortran control>
12.9 The Do Statement 12-9

<ffee reference)>
12.13 The Free Statement 12-18

{free statement)>
12,13 The Free Statement 12-18

{freeing>
12.13 The Free Statement 12-18

<{frem option>
12.26 The Rewrite Statement 12-38
12.28 The Write Statement 12-41

fully qualified
6.4 Structure Qualified References 6=3

<function reference>
6.7 Function References 6-5

generation of storage
8.1.3 Variables 4-1
1.7 Locator Data 4-3
8 Area Data 4-4
2.1 Allocation of Storage 4-11
.2 Automatic Storage 4-11
.3 Static Storage 4-12

=

Controlled Storage 4-12
S5 Based Storage 4-12
Storage Sharing 4-14
References 6-1
0.1 Argument Passing By-value or By-reference 6-8
2.u Storage of a Parameter 6-9
1

1
1.
3‘
3.
3.
3.
3.
3.

2
2
2
2
3
e

~ OO E EER RS
-

NN O® ¢ ¢ ¢ ¢ 4 ¢ o o o
«

)

15 Stringsize Condition 10-9
The Allocate Statement 12-1

.2 The Assignment Statement 12-2
9 The Do Statement 12-9

-

3/81 i-14 AG94E

12.13 The Free Statement 12-18

12.17 The Locate Statement 12-25

12.22 The Put Statement 12-30

12.23 The Read Statement 12-35

13.6.1 Addr 13-218

13.6.12 Offset 13-26.1

13.6.14.1 The Standard Definition of Pointer 13-27

{generic attribute>
S.4.24 Generic 5-22
6.9 Generic References 6-7

generic reference
6.9 Generic References 6-7

<{generic setd>
© 5.5 Attribute Consistency 5-32

<get data>
12.14 The Get Statement 12-19

{get data ref>
12.14 The Get Statement 12-19

<get edit>
12.14 The Get Statement 12-19»

<get edit pair>
12.18 The Get Statement 12-19

<get item>
12.14 The Get Statement 12-19

<get list>
12.14 The Get Statement 12-19

{get list specification>
12.18 The Get Statement 12-19

. {get statement>
12.14 The Get Statement 12-19

<{goto statement)
12.15 The Goto Statement 12-24

{graphic delimiter>
2.6.4 Delimiters, Blanks and Comments 2-8

<group>
2.3 Groups 2.2

hbound built-in function
13.4.3 Hbound 13-20

high built-in function
13.1.9 High 13-5

high9 built-in function
13.1.9a High9 13-6

<identifier>
2.6.1 Identifiers 2-5

<if statement>
12.16 The If Statement 12-25

<ignore option>
12.23 The Read Statement 12-35

imag built-in funetion
13.2.12 Imag 13-13

{imag pseudo>
12.2 The Assignment Statement 12-2

<imaginary constant>
2.6.2.3 Arithmetic Constants 2-7

immediately contained
2.2 Blocks and Block Structure 2-1

<in option>
12.1 The Allocate Statement 12-1
12,13 The Free Statement 12-18
<include macro>
2.7 Ineclude Macro 2-9

3/81 - i-15 AG94E

<increment>
12.9 The Do Statement 129

<independent statement)>
2.5 Statements 2-4

<index>
12.9 The Do Statement 12.9

index built-in function
13.1,10 Index 13-6

infix arithmetic operators
7.3.1 Arithmetic Operators 7-5

infix expression .
4.1.4 Data Types of Expressions and Functions 4.2
7. Expressions 7-1
7.1.3 Evaluation of Infix Expressions 7-2

<initial attribute>
5.4.25 Initial 5-23

<initial item>
5.4.25 Initial 5-23

<initial 1list>
5.4.25 Initial 5-23

<initial value>
5.8.25 Initial 5-23

initialdescription
11.2 File Values and File-State Blocks 11-1
11.3 Opening a File 11-3

<input attribute>
5.8.26 Input 5-24

input buffer
11.2 File Values and File-State Blocks 11-1
11.4 Closing a File 11-5
12.23 The Read Statement 12-35
12.26 The Rewrite Statement 12-38

input conversion
8.2.11 Format Controlled Conversion 8-9
12.12 The Format Statement 12-1l

Ahan

-
s

o
2.1 Syntax of Pictures 8-15

interleaved array
4.3.1.3 Packing and Alignment of Arrays 4-10

internal
5.1.1 Internal Scope 5-1

<internal attribute)>
5.4.27 Internal 5-24

<into option>
12.23 The Read Statement 12-35

irreducible
6.11 Reducibility of Functions 6-9

<irreducible attribute>
5.4.28 Irreducible 5-24

<isub>
2.6.3 Isubs 2-8

isub defining
4.3.3.3 Storage Sharing by Defined Variables u4-16
8.3.3.4 Isub Defining 4-17

item
5.4 Syntax and Semantics of Attributes 5-15

<iteration factor>
12,12 The Format Statement 12-14

<iterative do>
12.9 The Do Statement i2-9

3/81 i=16 AG9ZE

{iterative group>
2.3 Groups 2-2

<k>
8.2.11.1 Fixed-Point Format 8-9
12.12 The Format Statement 12-14

key
11.1.2 Record Data Sets 11-1

<key condition name)
10.4.8 Key Condition 10-7

<key option>
12.8 The Delete Statement 12-8
12.23 The Read Statement 12-35
12.25 The Rewrite Statement 12-38

<key spec)>
12.23 The Read Statement 12-35

<keyed attribute>
5.4.29 Keyed 5-24

keyed sequential data set
11.1.2 Record Data Sets 11-1

<keyfrom option>
12.17 The Locate Statement 12-25
12.28 The Write Statement 12-41

<keyto option>
12.23 The Read Statement 12-35

keyword
2.6.1 Identifiers 2-5

<label attribute)>
5.4.30 Label 5.25

-label constant
See label value

{label prefix>
2.5.1 Statement Prefixes 2-u

label valye
3.4 Flow of Control Within a Block Activation 3-3
4.1.9 Label Data Y4-4
5.4.30 Label 5.25
7.3.4.2 Types of Comparison 7-10
12.15 The Goto Statement 12-24

lbound built-in function
13.4.4 Lbound 13-21

{length>
5.4.6 Bit 5-16
5.4.8 Character 5-17

length built-in function
13.1.11 Length 13-6

{letter>
2.6.1 Identifiers 2-5

{lavel>
5.2.1 Declare Statements 5-2
5.2.1.1 Defactoring of Declare Statements 5-3
12,6 The Declare Statement 12-7

level-one
4.2.2 Structures 4-§
5.2.1.3 Normalization of Levels S5-4

{lexeme>
2.6 Lexical Syntax of PL/I 2-5 N

<like attribute>
5.2.2 Expansion of the Like Attribute 5.4
5.8.31 Like 5-25

<like reference>

5.2.2 Expansion of the Like Attribute S5-4
5.4.31 Like 5-25

3/81 f-17 AG94E

<limit>
12.9 The Do Statement 12-9

<line format>
12.12 The Format Statement 12-14

<line option> .
12.22 The Put Statement 12-30

linemark
5.4.18 Environment 5-20
10.4.4 Endpage Condition 10-5
11.1.1 Stream Data Sets 11=1
11.2 File Values and File-State Blocks 11-1
12.12 The Format Statement 12-14
12.14 The Get Statement 12-19
12.22 The Put Statement 12-30

lineno built-in function
13.6.9 Lineno 13=26.1

linenumber
10.4.4 Endpage Condition 10-5
11.2 File Values and File-State Blocks 11=1
11.3 Opening a File 11-3
12.12 The Format Statement 12-14
12.14 The Get Statement 12-19
12,22 The Put Statement 12-30
13.6.9 Lineno 13-26.1

linesize
11.2 File Values and File-State Blocks 11-1
11.3 Opening a File 11=3
12.12 The Format Statement 12-14
12.14 The Get Statement 12-19
12.22 The Put Statement 12-30

{linesize option> .
12.20 The Open Statement 12-28

<list do>
12.18 The Get Statement 12-19
12.22 The Put Statement 12-30

<literal constant>
2.6.2 Literal Constants 2-5

<literal constant set>
5.5 Attribute Consistency 5-32

{iocal attribute>
S.4.32 Local 5-25

local goto
3.5 Local and Nonlocal Goto Statements 3-3

<locate option>
12.17 The Locate Statement 12-25

<locate statement)
12.17 The Locate Statement 12-25

locator data
8.1.7 Locator Data 43

<locator qualified reference>
4.3.2.5 Based Storage 4-12
6.6 Locator Qualified References 6-5

<locator qualifier>
4.3.2.5 Based Storage 4-12
6.6 Locator Qualified References 6-5

log built-in function
13.3 The Mathematical Built-in Functions 13-18

1log10 built-in function :
13.3 The Mathemataical Built-in Functions 13-18

log2 built-in function
13.3 The Mathematical Built-in Functions 13-18

low built-in function
13.1.12 Low 13=6

ltrim built-in function
13.1.12a Ltrim 13-6.1

3/81 i-18 AGYYE

major structure
4.2.2 Structures 4.8
4.3.2.1 Allocation of Storage 4-11
4.3.2.5 Based Storage 4-12

{mantissa field>
8.2.12.1 Syntax of Pictures 8-15

max built-in function
13.2.13 Max 13-13

maximum length
4,1.6 String Data 4-3
5.4.6 Bit 5-16
5.4.8 Character 5-17
5.4.3% Nonvarying 5-26
5.5.55 Varying 5-32

maxlength built-in funetion
13.1.12b Maxlength 13-6.1

{member attribute)
5.4.33 Member 5-25

{member reference)
6.4 Structure Qualified References 6-3

2 Structures 4.8

«1 Packing and Alignment of Variables 4-8
«2.1 Allocation of Storage 4-11

-3 Storage Sharing 4-14

Scope of a Declaration 5-1

-2 Expansion of the Like Attribute S=4
Structure Qualified References 6=3

4,2
4.3
4.3
4.3
5.1
5.2
6.4

{meta-language>
1.2.3 A Formal Definition of the Meta-Language 1-3

.{meta-letter>
1.2.3 A Formal Definition of the Meta-Language -3

min built-in function
13.2.14 Min 13-13

mod built-in function
13.2.15 Mod 13-13

mode
2.6.2.3 Arithmetic Constants 2-7
4.1.5 Arithmetic Data 4-2
7.3.1.1 Operand Conversion for Arithmetic Operators 7-5
7.3.1.2 Results of Arithmetie Operators 7-86
8.2 Conversion Rules 8-2

multiple declaration
5.1 Scope of a Declaration 5-1

<multiple do>
12.9 The Do Statement 12-9

multiply built-in function
13.2.16 Multiply 13-15

name
5. Declarations 5-1

{name condition name)>
10.4.9 Name Condition 10-7

named constant
4.1.2 Constants 4-1

<named constant set)>
5.5 Attribute Consistency 5-32

<{newline> .
2.6.4 Delimiters, Blanks and Comments 2-8

nextrecord
11.2 File Values and File-State Blocks 11-1
11.3 Opening a File 11=3
12.8 The Delete Statement 12-8
12.23 The Read Statement 12-35
12.26 The Rewrite Statement 12-38
12.28 The Write Statement 1241

3/81 i-19 AG94E

<noniterative do>
12.9 The Do Statement 12-9

<noniterative group>
2.3 Groups 2-2

nonlocal goto
3.5 Local and Nonlocal Goto Statements 3-3

<{nonvarying attribute>
S.4.34 Nonvarying 5-26

<normal picture>
8.2.12.1 Syntax of Pictures 8-15

<notation constant>
1.2.3 A Formal Definition of the Meta-Language 1-3

<notation variable>
1.2.3 A Formal Definition of the Meta-Language 1-3

null bit-string
2.6.2.1 Bit-String Constants 2-6
4.1.6 String Data u4-3
8.2.4 Character-String to Bit-String Conversion 8-4
8.2.6 Bit-String to Character-String Conversion 8-§

null built-in function
13.6.10 Null 13-26.1

null character-string
2.6.2.2 Character-String Constants 2-6
4.1.6 String Data 4-3
8.2.4 Character-String to Bit-String Conversion 8-4

8.2.6 Bit-String to Character-String Conversion 8-5

null locator value
4.1.7 Locator Data 43
13.6.10 Null 13-26.1

'<nu11 statement)>
12.18 The Null Statement 12.27

nullo built-in function
13.6.11 Nullo 13=16.1

<numeric constant>
8.2.3 Character-String to Arithmetic Conversion 8=-3

<numeric picture>

8.2.12.1 Syntax of Pictures 8-15
offset attributed>

5.4.35 Offset 5-26

offset built-in function
13.6.12 Offset 13-26.1

<on statement>
3.6.3 On Units 3-4
12.19 The On Statement 12-27

<on unit>

3.6.3 On Units 34
12.19 The On Statement 12-27

onchar built-in function
13.5.1 Onchar 13-22

<onchar pseudo>
12.2 The Assignment Statement 12-2

oncode built-in function
13.5.2 Oncode 13-22

onfield built-in function
13.5.3 Onfield 13-23

onfile built-in function
13.5.4 Onfile 13-23

onkey built-in function
13.5.5 Onkey 13«23

onloec built-in function
13.5.6 Onloe 13-23

3/81 i-20

AG9LE

onsource built-in function
13.5.7 Onsource 13-23

<onsource pseudo)>
12.2 The Assignment Statement 12-2

<open statement)
12.20 The Open Statement 12-28

<opening>
12.20 The Open Statement 12-28

<opening attributed>
11.3 Opening a File 11=3
12.20 The Open Statement 12-28

{opening option>
12,20 The Open Statement 12-28

operand

7. Expressions 7-1
.4 Order of Evaluation 7-2
Optional Evaluation 7-3

~~

7 1

7 1 Operand Conversion for Concatenation 7-9
7 1

operato

.2 Syntax Expressions 1-2
Expressions 7-1

+4 Order of Evaluation 7-2

Formal Syntax of Expressions 7-4
-1 Arithmetic Operators 7-5

.2 Bit-String Operators 7-8

-3 Concatenate Operator 7-9
.4

1.
7.
7.
7.
7.
7.
7.
7. Relational Operators 7-9

1
2
3
3
3
3

<options attribute)
5.8.36 Options 5-2§

<output attribute>
5:4.37 Output 5-27

output buffer
11.4 Closing a File 11-5
12.17 The Locate Statement 12-25
12.28 The Write Statement 12-41

output conversion
8.2.11 Format Controlled Conversion 8.9
12,12 The Format Statement 12-14

<overflow condition name>
10.4.10 Overflow Condition 10-8

packed aggregate variable
4.3.1 Packing and Alignment of Variables 4-8

packed scalar variable
4.3.1 Packing and Alignment of Variables #4-8
4.3.1.1 Packing and Alignment of Scalar Variables 4.9

packed structure
4.3.1 Packing and Alignment of Variables 4-8
4.3.1.2 Packing and Alignment of Structures 4-9
4.3.1.3 Packing and Alignment of Arrays 4-10

<page format>
12.12 The Format Statement 12=14

<{page optiond>
12.22 The Put Statement 12-30

pagemark
11.1.1 Stream Data Sets 11-1
11.2 File Values and File-State Blocks 11a1
12.12 The Format Statement 12-14
12.22 The Put Statement 12=30

pageno built-in funetion
13.6.13 Pageno 13-27

<pageno pseudo>
12.2 The Assignment Statement 12-2

3/81 A =21

1 Operand Conversion for Arithmetic Operators 7-5
Operand Conversion for Bit-String Operators 7-8

Operand Conversion for Relational Operators 7-10

AG94E

pagenumber

11.2 File Values and File-State Blocks 11-1

12.2 The Assignment Statement 12-2

12.22 The Put Statement 12-30
13.6.13 Pageno 13-27

pagesize

10.4.4 Endpage Condition 10-5

11.2 File Values and File-State Bloecks 11-1
11.3 Opening a File 11-3

12.12 The Format Statement 12-14

{pagesize option>
12.20 The Open Statement 12.28

o
(x4

param

1.3 Packing and Alignment of Arrays 4-10
3 Storage Sharing 4-14
1 Storage Sharing by Parameters 4-15

2 Storage Sharing by Based Variables U4-15
Contextually Derived Attributes 5-9

1 Position 5-28
Parameters and Arguments 6-8

® 2 o & o 6 0 ¢ 8 e 0 o

oo OV NEEES

+4 Storage of a Parameter 6-9

8.1 Contexts That Force Conversion 8-1
9.1 Contexts That Force Promotion 9-1
12.4 The Call Statement 12-6

12.11 The Entry Statement 12-13

12.21 The Procedure Statement 12-29

{parameter attribute)>
5.4.38 Parameter 5.27

{parameter descriptor>
S.4.17 Entry 5-19

‘<paraneter descriptor list>

5.4.17 Entry 5-19

{parameter list)>
12.11 The Entry Statement 12-13
12.21 The Procedure Statement 12-29

parent pointer

3.3.2 Environment of a Block Activation 3=2

3.6.3 Ca Units 3-%
4.1.9 Label Data 4.4
4.1.10 Format Data 4-5

8.1.11 Entry Data 4-5

<parenthesized expression)>
7.2 Formal Syntax of Expressions 7-4

partially qualified
6.4 Structure Qualified References 6=-3

<picture)
8.2.12.1 Syntax of Pictures 8-15

<plcture attribute)
5.4.39 Picture 5-27

<picture char>
8.2.12.1 Syntax of Pictures 8-15

<picture format>
8.2.11.6 Picture Format 8-14
12.12 The Format Statement 12-14

<picture scale factor>
8.2.12.1 Syntax of Pictures 8-15

pictured character-string
4.1.6 String Data 4-3

{pointer attribute>
5.4.80 Pointer 5-28

pointer built-in function
13.6.14 Pointer 13-27

3781 i-22

.3
.3
<-4 Establishment of Contextual Declarations 5-9
.5
3

L

10

10.1 Argument Passing By-value or By-reference 6-8
10.2 Argument Conversion and Promotion 6-9

10.3 Asterisk and Constant Extents of Parameters 6-9
10 .

AG9UE

<position>

4.3.3.3 Storage Sharing by Defined Variables 4-16
5.8.41 Position 5-28

{position attribute)
4.3.3.3 Storage Sharing by Defined Variables 4-16
5.4.41 Position 5-28

prec built-in funection
13.2.17 Precision 13-16

{precision>
5.8.42 Precision 5-28

precision
4.1.5 Arithmetic Datas 2.2
5.3 Completion of Attribute Sets 5-10
5.8.24 Generic 5-22
5.4.42 Precision 5-28
10.1 Argument Passing By-value or By-reference 6-8
+1.1 Operand Conversion for Arithmetic Operators 7-5
-1.2 Results of Arithmetic Operators 7-6
+3 Character-String to Arithmetic Conversion 8-3
5 Bit-String to Arithmetic Conversion 8-2
7 Arithmetic to Character-String Conversion 8-5
8 Arithmetic to Bit-String Conversion 8-7
9 Arithmetic Mode Conversion 8-7
.10 Arithmetic Type, Base and Precision Conversion 8-8
- 11 Format Controlled Conversion 8-9
8.2.12 Picture Controlled Conversion 8-15
10.4.12 Size Condition 10-8

Qo 00 00 OO 00 00 Q0 ~3 3 O

3
3
2
2
2
2
2
2
2

<precision attribute>
S.4,24 Generic 5-22
5.4.42 Precision 5-28

precision built-in funetion
13.2.17 Precision 13-16

<precision key>
5.4.42 Precision 5-28

{predicate>
5.3.1 Default Statement S5-11
i12.7 The Default Statement 12-8

{predicate one>
5.3.1 Default Statement 5-11
12.7 The Default Statement 128

{predicate three>
5.3.1 Default Statement 5-11
12.7 The Default Statement 12-8

{predicate two)> .
5.3.1 Default Statement 5-11
12.7 The Default Statement 12-8

<prefizx>
2.5.1 Statement Prefixes 2-4

prefix arithmetic operators
7.3.1 Arithmetic Operators 7-5

prefix expression
4.1.4 Data Types of Expressions and Functions 4.2
7. Expressions T-1
7.1.2 Evaluation of Prefix Expressions 7-1

name>

X
0.2 Condition Prefixes 101

{prefi
1
<prefix subscript)>
2.5.1 Statement Prefixes 2-4
primitive expression
7. Expressions 7-1
T.1.1 Evaluation of Primitive Expressions 7-1

{print attribute>
5.4.43 Print 5-29

{procedure>
2.2 Blocks and Block Structure 2-1

<{procedure component> '
2.2 Blocks and Block Structure 2-1 -

3/81 i-23

AG94E

{procedure option>
12.21 The Procedure Statement 12-29

{procedure statement)>

12.21 The Procedure Statement 12-.29
process (a Multies process)
2 A Multics PL/I Program 3-1
1.7 Locator Data 4-3
1.8 Area Data 4.4
3.2.3 Static Storage #-12
3.2.4 Controlled Storage 4-12
3.2.5 Based Storage 4-12
4 Closing a File 11-5
.6.20a Velock 13=-30
prod built-in function

13.4.5 Prod 13-21

program
2.1 External Procedure 2-1
See process

{programmer defined condition name>
10.4.21 Multics and Programmer Defined Conditions 10-11

<pseudo-variable>
12.2 The Assignment Staterient 12-2

ptr built-in function
13.6.14 Pointer 13-27

<put data>
12.22 The Put Statement 12-20

{put data item>
12.22 The Put Statement 12-30

<{put edit>
. 12.22 The Put Statement 12-30

<put edit pair>
12.22 The Put Statement 12-30

<put item>
12.22 The Put Statement 12-30

<put list> .
12.22 The Put Statement 12-30

<put list specification>
12.22 The Put Statement 12-30

<put statement>
12.22 The Put Statement 12-30

<radix factor>
2.6.2.1 Bit-String Constants 2-6
8.2.11.5 Bit-String Format 8-14
12.12 The Format Statement 12-14
12.14 The Get Statement 12-19

<{range>
5.3.1 Default Statement 5-11
12.7 The Default Statement 12-8

rank built-in function
13.1.12¢c Rank 13-6,1

{read option>
12.23 The Read Statement 12-35

<read statement>
12.23 The Read Statement 12-35

<real attribute>
S.4,44 Real 5-29

real built-in function
13.2.18 Real 13-16

{real constant>
2.6.2.3 Arithmetic Constants 2-7

{real format>
12.12 The Format Statement 12-14

3781 i-24 AG94E

<real pseudo>
12.2 The Assignment Statement 12-2

{receiver>
12.23 The Read Statement 12-35

{record attribute)
5.4.45 Record 5-29

{record condition name>
10.4.11 Record Condition 10-8

record data set
5.4.45 Record 5-29
5.4.50 Stream 5-30.1
11.1 Data Sets 11=1
ii.1.2 Record Data Sets 11-1
11.3 Opening a File 11-3

<record description)
5.5 Attribute Consistency 5-32
11.3 Opening a File 11-3

reducible
5.4.28 Irreducible 5-24
5.4.46 Reducible 5-29
6.11 Reducibility of Functions 6=-9
7.1.4 Order of Evaluation 7-2
7.1.5 Optional Evaluation 7-3

{reducible attribute)
S.4.46 Reducible 5-29

{refer option>
4.3.2.5 Based Storage 4-12
5.4.2 Area 5-15
5.4.6 Bit 5-16
5.4.8 Character 5-17
5.4.15 Dimension 5-18

'<reference>
6. References 6-1

rel built-in function
13.6.15 Rel 13-28

relational operators
].3.4 Relational Operators 7-9

{remote format)
12.12 The Format Statement 12-114

{repeat control)
12.9 The Do Statement 12-9

resolved
6. References 6-1
6.5 Reference Resolution and Ambiguity 6-4

<return statement)
12.28 The Return Statement 12-37.1

<return value)>
12.24 The Return Statement 12-37.1

{returns attribute>
5.4.487 Returns 5«30

{returns descriptor>
5.4.47 Returns 5-30

reverse built-in function
13.1.13 Reverse 13-6.2

{revert statement>
12.25 The Revert Statement 12-38

reverted
10.3 Signals and On-Units 10-2
12.19 The On Statement 12-27

{rewrite option>
12.26 The Rewrite Statement 12-38

{rewrite statement)
12.26 The Rewrite Statement 12-38

3/81 i-25

AG9LE

round built-in function
13.2.19 Round 13-17

row-major order
4,2.1 Arrays of Scalars 4-7
4.2.3 Arrays of Structures 4-8

5.4.25 Initial 5-23
12.14 The Get Statement 12-19
12.22 The Put Statement 12-30

rtrim built-in function
13.1.13a Rtrim 13-6.2

run unit
3.2 A Multies PL/I Program 3-1

4.1.7 Locator Data 4-3

4.3.2.3 static Storage 4-12
4.3.2.4 Controlled Storage 4-12
4.3.2.5 Based Storage 4-12

11.4 Closing a File 11-5

<{s>
8.2.11.2 Floating-Point Format 8-11
12.12 The Format Statement 12-14

scalar value
4.1 Data Types U4-1
4.2 Aggregates of Data 4.7
4.2.1 Arrays of Scalars 4-7
9. Promotion of Aggregate Types 9-1
9.3 Promotion Rules 9-2

<scale factor>
5.4.42 Precision 5-28

scale factor
4.1.5 Arithmetic Data 4-2

.{scale type>
2.6.2.3 Arithmetic Constants 2-7

{scope>
5.5 Attribute Consistency 5-32

scope
Blocks and Block Structure 2-1
Scope of a Declaration 5-1

1 Internal Scope 5-1

e

b ad s f\)

:2 Externzl Scope 5-3

References 6-1

4 Structure Qualified References 6=2

2 Condition Prefixes 10-1

4.9 Name Condition 10-7

2 File Values and File-State Blocks 11-1

—_-—_—— VOV

-0 s &

o o @

{scope class>
5.5 Attribute Consistency 5-32

search built-in function
13.1.14 Search 13-6.2

sSegment number
13.6.2 Addrel 13-24
13.6.4 Baseno 13-24
13.6.5 Baseptr 13-25
13.6.14.2 The Nonstandard Definition of Pointer 13-27

segments
2.7 Include Macro 2-9

{selector>
5.4.24 Generic 5-22
6.9 Generic References 6-7

self-defined structure
4.3.2.5 Based Storage 4-12

<sequence>
1.2.3 A Formal Definition of the Meta-Language 1-3

<sequential attribute>
5.4.48 Sequential 5-30

sequential data set

11.1.2 Record Data Sets 11-1
11.2 File Values and File-State Blocks 11-1

3/81 i-26 AG9UE

<{sequential descriptiond
5.5 Attribute Consistency 5-32
~11.3 Opening a File 11=3

<set optiond>
12.1 The Allocate Statement 12-1
12.17 The Locate Statement 12-25
12.23 The Read Statement 12-35

side-effect .
6.11 Reducibility of Functions 6=9
7.1.4 Order of Evaluation 7-2
7.1.6 Expression Evaluation and Conditions 7-3
10.3.1 Restrictions 10-3

sign built-in function
13.2.20 Sign 13=-17

sign type
4.3.1.4 Sign Types 4-10.1

<signal statement)
12.27 The Signal Statement 12-39

signalled
3.6.3 On Units 3-4
10.3 Signals and On-Units 10~2

<signed attribute>
S.4.48a Signed 5-30.1

<signs>
8.2.12.1 Syntax of Pictures 8-15

simple defining
4.3.3.3 Storage Sharing by Defined Variables 4-1§
4.3.3.5 Simple Defining 4-18

<simple expression)
7.2 Formal' Syntax of Expressions 7-4-

{simple reference>
6.1 Simple References 6-2

sin built-in funection
13.3 The Mathematical Built-in Functions 13-18

sind built-in funetion .
13.3 The Mathematical Built-ipn Functions 13-18

<single loop>
12.9 The Do Statement 12-9

sinh built-in function
13.3 The Mathematical Built-in Functions 13-18

size built-in funetion
13.6.16 Size 13-28

<size condition name>
10.4.12 Size Condition 10-8

<skip format>
12.12 The Format Statement 12-14

<skip option>
12.14 The Get Statement 12-19
12.22 The Put Statement 12=-30

snap
12.19 The On Statement 12-27

source precision
5.3 Completion of Attribute Sets 5-10

<{space>
2.6.4 Delimiters, Blanks and Comments 2-8
12.14 The Get Statement 12-19 |

sqrt built-in funetion
13.3 The Mathematical Built-in Functions 13-18

Stae built-in function
13.6.17 Stac 13-28

staeq built-in funetion
13.6.1T7a Stacq 13-29

3781 i-27 AG94E

stackbaseptr built-in function
13.6.17b Stackbaseptr 13-29

stackframeptr built-in function
13.6.17¢ Stackframeptr 13-29

<{start>
12.9 The Do Statement 12-9

{statement)
2.5 Statements 2-u4

{static attribute>
S.4.49 Static 5-30.1

static storage
3.,3.2.1 Allocation of Storage #-11
8.3.2.3 Static Storage 4-12

<{stop statement>
12.27a The Stop Statement 12-40

storage class
4.3.2.1 Allocation of Storage 3-11
5.4.3 Automatic 5-16
S.4.4 Based 5-16
5.4.12 Controlled 5-18
S5.4.49 Static 5-30.1
. 12.1 The Allocate Statement 12-1

storage class attributes
4.3.2.1 Allocation of Storage 411

{storage condition name>
10.4.13 Storage Condition 10-9

{stream attribute>
5.4.50 Stream 5-30,1

. stream data set
S.4.45 Record 5-29
5.4.50 Stream 5-30.1
10.4.9 Name Condition 10-7
11.1 Data Sets 11-1
11.1.1 Stream Data Sets 11-1
11,2 File Values and File-State Blocks 111

<{stream description)>
5.5 Attribute Consistency 5-32
11.3 Opening a File 113

<{stream reference>
12.14 The Get Statement 12-19

streamposition
4,1.12 File Data 4-6
11.2 File Values and File-State Blocks 11«1

<string>
5.5 Attribute Consistency 5-32

string built-in function
13.1.15 String 13-7

<string get>
12.14 The Get Statement 12-19

<{string get option>
) 12.14 The Get Statement 12-19

<string option> .
12,14 The Get Statement 12-19
12.22 The Put Statement 17.30

string overlay defining
4.3.3.3 Storage Sharing by Defined Variables 4-1§
4.3.3.6 String Overlay Defining 4«19
5.8.41 Position 5-28
13.1.15 String 13-7

<string pseudo>
12.2 The Assignment Statement 12-2

<string put)>
12.22 The Put Statement 12-30

3/81 i-28 AG9UE

string value ’
2.6.2.1 Bit-String Constants 2-6

2.2 Character-String Constants 2-6

1 Representation of Data 4-1

6 String Data 43

6 Bit 5-16

8 Character 5-17

9 Complex 5-17

33 Nonvarying 5-26

55 Varying 5-32

2.2 Results of Bit-String Operators 7-8

4.2 Types of Comparison 7-10

.
.
.
.
.
.
.
-
.
.

6
1
1
4
n
Yy
I
8
3
3

NNV B N

<{stringrange condition name)>
10.4.18 Stringrange Condition 10=9

{stringsize condition name>
10.4.15 Stringsize Condition 10-9

structure
3,2 Aggregates of Data 4-7
4.2.2 Structures 4-3
2.3 Arrays of Structures 4-8
3.1 Packing and Alignment of Variables 4-8
3.2.1 Allocation of Storage 4-11
3.2.5 Based Storage 4-12
3.3 Storage Sharing 4-14
2.2 Expansion of the Like Attribute 5-4
2.3.1.3 Declarations of Structures 5-6
4.33 Member 5-25
4.51 Structure 5-30.1 -
4 Structure Qualified References 6-3
5 Reference Resolution and Ambiguity 6-4
3.4.2 Types of Comparison 7-10
9.2 Types of Promotion 9-2
9.3 Promotion Rules 9-2

~NOONVIVNINIW & &= = 4T
® & s s e ¢ e s e e & @

{structure attribute)
5.4.51 Structure 5-30.1

'<structure qualified reference>
6.4 Structure Qualified References 6=3

<{subs>
12.14 The Get Statement 12-19

{subscript> :
6.2 Subscripted References 6-2 .

subsecript

4.2.1 Arrays of Scalars 3-7
2.3 Arrays of Structures 4-8
3.3 Storage Sharing by Defined Variables 4«16
3.4 Isub Defining 4-17 :
3.5 Simple Defining u4-18
Subscripted References 6-2
Cross-Section References 6-3
Structure Qualified References 6-3
Reference Resolution and Ambiguity 6-4
Contexts That Force Conversion §-1
2 Condition Prefixes 10«1
10.3 Signals and On-Units 10-2
10.4.16 Subscriptrange Condition 10-10
12.14 The Get Statement 12-19
12.22 The Put Statement 12-30

3
3
3
2
3
3
5
1

<subscripted reference)
6.2 Subseripted References 6§-2

<subscriptrange condition name>
10.4.16 Subscriptrange Condition 10-10

substr built-in function
13.1.16 Substr 13-7 ,

{substr pseudo>
12.2 The Assignment Statement 12-2

substructure
4,2.2 Structures 4.8
4.3.3.2 Storage Sharing by Based Variables 4-15
6.4 Structure Qualified References 6=-3

subtract built-in function
13.2.21 Subtract 13-18

3781 i-29 AG94E

sum built-in function
13.4.6 Sum 13-21

<syntax expression>
1.2.3 A Formal Definition of the Meta-Language 1-3

{syntax rule>
1.2.3 A Formal Definition of the Meta-Language 1-3

{tab>
2.6.% Delimiters, Blanks and Comments 2.8

tan built-in function
13.3 The Mathematical Built-in Functions 13-18

tand built-in funection
13.3 The Mathematical Built-in Functions 13<-18

tanh built-in function
13.3 The Mathematical Built-in Functions 13-18

{target>
12.2 The Assignment Statement 712-2
12.14 The Get Statement 12-19

target data type
8.1 Contexts That Force Conversion 8-1
8.2.3 Character-String to Arithmetic Conversion 8-3

<then clause>
12.16 The If Statement 12-25

{thereafter>
12.9 The Do Statement 12-9

time built-in funetion
13.6.18 Time 13-29

.12 File Data 4-6

Contexts That Force Conversion 8-1

1.1 Stream Data Sets 11-1

1.2 Record Data Sets 11-1

2 File Values and File-State Blocks 11-1
3 Opening a File 11-3

2.12 The Format Statement 12-1%

2.20 The Open Statement 12-28

1
1

<title option>
12,20 The Open Statement 12-28

translate built-in funetiocn
13.1.17 Translate 137

{transmit condition name>
10.4.17 Transmit Condition 10-10

true with respect to
5.3.2 Evaluation of Default Statements 5-12

trune built-in function
13.2.22 Trunc 13-18

type
b.1.5 Arithmetic Data u4-2

{unaligned attribute)
5.4.52 Unaligned 5-31

unconnected array
4.3.1.3 Packing and Alignment of Arrays 4-10
4.3.3.2 Storage Sharing by Based Variables 4215

{undefinedfile condition name)>
10.8.18 Undefinedfile Condition 10-10

<underflow condition name)
10.4,19 Underflow Condition 10=11

<unit>
1.2.3 A Formal Definition of the Meta-Language 1-3

unpacked aggregate variable
4,3.1 Packing and Alignment of Variables 4-8

unpacked scalar variable
4.3.1 Packing and Alignment of Variables 4.8

3/81 i-30 AG94E

<unsigned attribute)
5.4.52a Unsigned 5-31

unspec built-in function
13.6.19 Unspec 13-30

<unspec pseudo> R
12.2 The Assignment Statement 122

{update attribute)
5.4.53 Update 5-32

<user defaults)
5.3.1 Default Statement S5=11
12.7 The Default Statement 12-8

{valid bit-ficld> :
12.14 The Get Statement 12-19

valid built-in function
13.6.20 Valid 13=-30

<valid character-field>
12,14 The Get Statement 12-19

{valid field>
12.14 The Get Statement 12-19

<valid string>
8.2.3 Character-String to Arithmetic Conversion 8-3

variable
2,6.1 Identifiers 2-5
4.1.3 Variables 4-1
5.4.54 Variadble 5-32
6. References 6-1

<variable attribute)
5.4.54 Variable 5-32

'<variable set>
5.5 Attribute Consistency 5-32

{varying attribute>
5.4.55 Varying 5-32

velock built-in function
13.6.21 Veloek 13-30

verify built-in funetion
13.1.18 Verify 13-8

<w>
8.2.11.1 Fixed-Point Format 8-9
8.2.11.2 Floating-Point Format §-11
8.2.11.4 Character-String Format 8-13
8.2.11.5 Bit-String Format 8-14
12.12 The Format Statement 12-14

{while expression>
12.9 The Do Statement 12-9

<write option>
12.28 The Write Statement 12-41

{write statement>
12.28 The Write Statement 12-41

<x format)>
12.12 The Format Statement 12-14

<zerodivide condition name>
10.4.20 Zerodivide Condition 10-12

3781 i-31 AG94E

HONEYWELL INFORMATION SYSTEMS -
Technical Publications Remarks Form

ORDER NO. | AG94-02
MULTICS PL/I LANGUAGE SPECIFICATION

TITLE

(INCLUDES ADDENDA A,B,C,D AND E)
pATED | JULY 1976

ERRCORS IN PLUBLICATION

SUGGESTIONS FOR IMPROVEMENT TO PUBLICATION

Your comments wiil be investigated by appropriate technical personnel
and action will be taken as reauired. Receipt of all forms wiil be
acknowledged; however, if you require a detailed reply, check here. D

FROM: NAME DATE
TITLE
COMPANY
ADDRESS

PLEASE FOLD AND TAPE—-
NOTE: U. S. Postal Service will not deliver stapled forms

NO POSTAGE
NECESSARY
IF MAILED
IN THE
UNITED STATES

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO. 39531 WALTHAM, MA02154

POSTAGE WILL BE PAID BY ADDRESSEE

HONEYWELL INFORMATION SYSTEMS
200 SMITH STREET
WALTHAM, MA 02154

ATTN: PUBLICATIONS, MS486

Honeywell

Together, we can find the answers.
Honeywell

Hon ii information Systems
U.S.A.: 200 Smith St., MS 486, Waltham, MA 02154
Canada: 155 Gordon Baker Rd., Willowdale, ON M2H 3N7
U.K.: Great West Rd., Brentford, Middlesex TW8 9DH IRaly: 32 Via Pireili, 20124 Milano
Mexico: Avenida Nuevo Leon 250, Mexico 11, D.F. Japan: 2-2 Kanda Jimbo-cho, Chiyoda-ku, Tokyo

Australia: 124 Walker St., North Sydney, N.S.W. 2060 S.E. Asia: Mandarin Plaza, Tsimshatsui East, H.K.

42039, 1C185, Printed in U.S.A.

AG94-02

	000
	001
	002
	003
	004
	005
	006
	007
	008
	009
	01-01
	01-02
	01-03
	01-04
	01-05
	01-06
	02-01
	02-02
	02-03
	02-04
	02-05
	02-06.0
	02-06.1
	02-07.1
	02-07
	02-08
	02-09.0
	02-09.1
	03-01
	03-02.0
	03-02.1
	03-02.2
	03-03
	03-04
	04-01
	04-02
	04-03
	04-04
	04-05
	04-06
	04-07.00
	04-07.01
	04-07.1
	04-08
	04-09
	04-10.0
	04-10.1
	04-10.2
	04-11
	04-12
	04-13
	04-14
	04-15
	04-16
	04-17
	04-18
	04-19
	04-20
	05-01
	05-02
	05-03
	05-04
	05-05
	05-06
	05-07
	05-08
	05-09
	05-10
	05-11
	05-12.0
	05-12.1
	05-12.2
	05-13
	05-14
	05-15
	05-16
	05-17
	05-18
	05-19
	05-20
	05-21
	05-22
	05-23
	05-24
	05-25
	05-26.0
	05-26.1
	05-26.2
	05-27
	05-28
	05-29
	05-30.0
	05-30.1
	05-30.2
	05-31
	05-32
	05-33
	05-34
	06-01
	06-02
	06-03
	06-04
	06-05
	06-06
	06-07
	06-08
	06-09
	06-10
	07-01
	07-02
	07-03
	07-04
	07-05
	07-06
	07-07
	07-08.0
	07-08.1
	07-08.2
	07-09
	07-10
	07-11
	07-12
	08-01
	08-02
	08-03
	08-04
	08-05
	08-06
	08-07
	08-08
	08-09
	08-10
	08-11
	08-12
	08-13
	08-14.0
	08-14.1
	08-14.2
	08-15
	08-16
	08-17
	08-18
	08-19
	08-20
	08-21
	08-22
	09-01
	09-02
	09-03
	09-04
	10-01
	10-02
	10-03
	10-04
	10-05
	10-06
	10-07
	10-08
	10-09
	10-10
	10-11
	10-12
	11-01
	11-02
	11-03
	11-04
	11-05
	11-06
	12-01
	12-02
	12-03.00
	12-03.01
	12-03.1
	12-04
	12-05
	12-06
	12-07
	12-08
	12-09
	12-10
	12-11
	12-12
	12-13
	12-14
	12-15
	12-16
	12-17
	12-18
	12-19
	12-20
	12-21.00
	12-21.01
	12-21.1
	12-22
	12-23
	12-24
	12-25
	12-26
	12-27
	12-28
	12-29
	12-30
	12-31
	12-32
	12-33
	12-34
	12-35
	12-36
	12-37.00
	12-37.01
	12-37.1
	12-38
	12-39
	12-40
	12-41
	12-42
	13-01
	13-02.0
	13-02.1
	13-02.2
	13-03.00
	13-03.01
	13-03.1
	13-04
	13-05
	13-06.0
	13-06.1
	13-06.2
	13-07
	13-08
	13-09
	13-10
	13-11
	13-12
	13-13
	13-14
	13-15
	13-16
	13-17
	13-18.0
	13-18.1
	13-18.2
	13-19
	13-20
	13-21
	13-22
	13-23
	13-24
	13-25
	13-26.0
	13-26.1
	13-26.2
	13-27
	13-28
	13-29
	13-30
	A-01
	A-02
	A-03
	A-04
	i-01
	i-02
	i-03
	i-04
	i-05
	i-06
	i-07
	i-08
	i-09
	i-10
	i-11
	i-12
	i-13
	i-14
	i-15
	i-16
	i-17
	i-18
	i-19
	i-20
	i-21
	i-22
	i-23
	i-24
	i-25
	i-26
	i-27
	i-28
	i-29
	i-30
	i-31
	i-32
	replyA
	replyB
	xBack

